Spaces:
Running
on
Zero
Running
on
Zero
JeffreyXiang
commited on
Commit
·
cd41f5f
1
Parent(s):
4cd032d
Manage cache use gradio
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import spaces
|
|
3 |
from gradio_litmodel3d import LitModel3D
|
4 |
|
5 |
import os
|
|
|
6 |
os.environ['SPCONV_ALGO'] = 'native'
|
7 |
from typing import *
|
8 |
import torch
|
@@ -17,11 +18,22 @@ from trellis.utils import render_utils, postprocessing_utils
|
|
17 |
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
-
TMP_DIR =
|
21 |
-
|
22 |
os.makedirs(TMP_DIR, exist_ok=True)
|
23 |
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
26 |
"""
|
27 |
Preprocess the input image.
|
@@ -33,10 +45,8 @@ def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
|
33 |
str: uuid of the trial.
|
34 |
Image.Image: The preprocessed image.
|
35 |
"""
|
36 |
-
trial_id = str(uuid.uuid4())
|
37 |
processed_image = pipeline.preprocess_image(image)
|
38 |
-
processed_image
|
39 |
-
return trial_id, processed_image
|
40 |
|
41 |
|
42 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
@@ -80,15 +90,29 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
80 |
return gs, mesh, state['trial_id']
|
81 |
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
@spaces.GPU
|
84 |
-
def image_to_3d(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
"""
|
86 |
Convert an image to a 3D model.
|
87 |
|
88 |
Args:
|
89 |
-
|
90 |
seed (int): The random seed.
|
91 |
-
randomize_seed (bool): Whether to randomize the seed.
|
92 |
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
93 |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
94 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
@@ -98,10 +122,9 @@ def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_stre
|
|
98 |
dict: The information of the generated 3D model.
|
99 |
str: The path to the video of the 3D model.
|
100 |
"""
|
101 |
-
|
102 |
-
seed = np.random.randint(0, MAX_SEED)
|
103 |
outputs = pipeline.run(
|
104 |
-
|
105 |
seed=seed,
|
106 |
formats=["gaussian", "mesh"],
|
107 |
preprocess_image=False,
|
@@ -118,15 +141,20 @@ def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_stre
|
|
118 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
119 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
120 |
trial_id = uuid.uuid4()
|
121 |
-
video_path = f"{
|
122 |
-
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
123 |
imageio.mimsave(video_path, video, fps=15)
|
124 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
|
|
|
125 |
return state, video_path
|
126 |
|
127 |
|
128 |
@spaces.GPU
|
129 |
-
def extract_glb(
|
|
|
|
|
|
|
|
|
|
|
130 |
"""
|
131 |
Extract a GLB file from the 3D model.
|
132 |
|
@@ -138,22 +166,16 @@ def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[s
|
|
138 |
Returns:
|
139 |
str: The path to the extracted GLB file.
|
140 |
"""
|
|
|
141 |
gs, mesh, trial_id = unpack_state(state)
|
142 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
143 |
-
glb_path = f"{
|
144 |
glb.export(glb_path)
|
|
|
145 |
return glb_path, glb_path
|
146 |
|
147 |
|
148 |
-
|
149 |
-
return gr.Button(interactive=True)
|
150 |
-
|
151 |
-
|
152 |
-
def deactivate_button() -> gr.Button:
|
153 |
-
return gr.Button(interactive=False)
|
154 |
-
|
155 |
-
|
156 |
-
with gr.Blocks() as demo:
|
157 |
gr.Markdown("""
|
158 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
159 |
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
|
@@ -162,7 +184,7 @@ with gr.Blocks() as demo:
|
|
162 |
|
163 |
with gr.Row():
|
164 |
with gr.Column():
|
165 |
-
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
|
166 |
|
167 |
with gr.Accordion(label="Generation Settings", open=False):
|
168 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
@@ -189,7 +211,6 @@ with gr.Blocks() as demo:
|
|
189 |
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
|
190 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
191 |
|
192 |
-
trial_id = gr.Textbox(visible=False)
|
193 |
output_buf = gr.State()
|
194 |
|
195 |
# Example images at the bottom of the page
|
@@ -201,33 +222,36 @@ with gr.Blocks() as demo:
|
|
201 |
],
|
202 |
inputs=[image_prompt],
|
203 |
fn=preprocess_image,
|
204 |
-
outputs=[
|
205 |
run_on_click=True,
|
206 |
examples_per_page=64,
|
207 |
)
|
208 |
|
209 |
# Handlers
|
|
|
|
|
|
|
210 |
image_prompt.upload(
|
211 |
preprocess_image,
|
212 |
inputs=[image_prompt],
|
213 |
-
outputs=[
|
214 |
-
)
|
215 |
-
image_prompt.clear(
|
216 |
-
lambda: '',
|
217 |
-
outputs=[trial_id],
|
218 |
)
|
219 |
|
220 |
generate_btn.click(
|
|
|
|
|
|
|
|
|
221 |
image_to_3d,
|
222 |
-
inputs=[
|
223 |
outputs=[output_buf, video_output],
|
224 |
).then(
|
225 |
-
|
226 |
outputs=[extract_glb_btn],
|
227 |
)
|
228 |
|
229 |
video_output.clear(
|
230 |
-
|
231 |
outputs=[extract_glb_btn],
|
232 |
)
|
233 |
|
@@ -236,33 +260,16 @@ with gr.Blocks() as demo:
|
|
236 |
inputs=[output_buf, mesh_simplify, texture_size],
|
237 |
outputs=[model_output, download_glb],
|
238 |
).then(
|
239 |
-
|
240 |
outputs=[download_glb],
|
241 |
)
|
242 |
|
243 |
model_output.clear(
|
244 |
-
|
245 |
outputs=[download_glb],
|
246 |
)
|
247 |
|
248 |
|
249 |
-
# Cleans up the temporary directory every 10 minutes
|
250 |
-
import threading
|
251 |
-
import time
|
252 |
-
|
253 |
-
def cleanup_tmp_dir():
|
254 |
-
while True:
|
255 |
-
if os.path.exists(TMP_DIR):
|
256 |
-
for file in os.listdir(TMP_DIR):
|
257 |
-
# remove files older than 10 minutes
|
258 |
-
if time.time() - os.path.getmtime(os.path.join(TMP_DIR, file)) > 600:
|
259 |
-
os.remove(os.path.join(TMP_DIR, file))
|
260 |
-
time.sleep(600)
|
261 |
-
|
262 |
-
cleanup_thread = threading.Thread(target=cleanup_tmp_dir)
|
263 |
-
cleanup_thread.start()
|
264 |
-
|
265 |
-
|
266 |
# Launch the Gradio app
|
267 |
if __name__ == "__main__":
|
268 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
|
|
3 |
from gradio_litmodel3d import LitModel3D
|
4 |
|
5 |
import os
|
6 |
+
import shutil
|
7 |
os.environ['SPCONV_ALGO'] = 'native'
|
8 |
from typing import *
|
9 |
import torch
|
|
|
18 |
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
+
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
|
|
22 |
os.makedirs(TMP_DIR, exist_ok=True)
|
23 |
|
24 |
|
25 |
+
def start_session(req: gr.Request):
|
26 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
27 |
+
print(f'Creating user directory: {user_dir}')
|
28 |
+
os.makedirs(user_dir, exist_ok=True)
|
29 |
+
|
30 |
+
|
31 |
+
def end_session(req: gr.Request):
|
32 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
33 |
+
print(f'Removing user directory: {user_dir}')
|
34 |
+
shutil.rmtree(user_dir)
|
35 |
+
|
36 |
+
|
37 |
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
38 |
"""
|
39 |
Preprocess the input image.
|
|
|
45 |
str: uuid of the trial.
|
46 |
Image.Image: The preprocessed image.
|
47 |
"""
|
|
|
48 |
processed_image = pipeline.preprocess_image(image)
|
49 |
+
return processed_image
|
|
|
50 |
|
51 |
|
52 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
|
|
90 |
return gs, mesh, state['trial_id']
|
91 |
|
92 |
|
93 |
+
def get_seed(randomize_seed: bool, seed: int) -> int:
|
94 |
+
"""
|
95 |
+
Get the random seed.
|
96 |
+
"""
|
97 |
+
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
98 |
+
|
99 |
+
|
100 |
@spaces.GPU
|
101 |
+
def image_to_3d(
|
102 |
+
image: Image.Image,
|
103 |
+
seed: int,
|
104 |
+
ss_guidance_strength: float,
|
105 |
+
ss_sampling_steps: int,
|
106 |
+
slat_guidance_strength: float,
|
107 |
+
slat_sampling_steps: int,
|
108 |
+
req: gr.Request,
|
109 |
+
) -> Tuple[dict, str]:
|
110 |
"""
|
111 |
Convert an image to a 3D model.
|
112 |
|
113 |
Args:
|
114 |
+
image (Image.Image): The input image.
|
115 |
seed (int): The random seed.
|
|
|
116 |
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
117 |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
118 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
|
|
122 |
dict: The information of the generated 3D model.
|
123 |
str: The path to the video of the 3D model.
|
124 |
"""
|
125 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
126 |
outputs = pipeline.run(
|
127 |
+
image,
|
128 |
seed=seed,
|
129 |
formats=["gaussian", "mesh"],
|
130 |
preprocess_image=False,
|
|
|
141 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
142 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
143 |
trial_id = uuid.uuid4()
|
144 |
+
video_path = os.path.join(user_dir, f"{trial_id}.mp4")
|
|
|
145 |
imageio.mimsave(video_path, video, fps=15)
|
146 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
|
147 |
+
torch.cuda.empty_cache()
|
148 |
return state, video_path
|
149 |
|
150 |
|
151 |
@spaces.GPU
|
152 |
+
def extract_glb(
|
153 |
+
state: dict,
|
154 |
+
mesh_simplify: float,
|
155 |
+
texture_size: int,
|
156 |
+
req: gr.Request,
|
157 |
+
) -> Tuple[str, str]:
|
158 |
"""
|
159 |
Extract a GLB file from the 3D model.
|
160 |
|
|
|
166 |
Returns:
|
167 |
str: The path to the extracted GLB file.
|
168 |
"""
|
169 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
170 |
gs, mesh, trial_id = unpack_state(state)
|
171 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
172 |
+
glb_path = os.path.join(user_dir, f"{trial_id}.glb")
|
173 |
glb.export(glb_path)
|
174 |
+
torch.cuda.empty_cache()
|
175 |
return glb_path, glb_path
|
176 |
|
177 |
|
178 |
+
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
gr.Markdown("""
|
180 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
181 |
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
|
|
|
184 |
|
185 |
with gr.Row():
|
186 |
with gr.Column():
|
187 |
+
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
188 |
|
189 |
with gr.Accordion(label="Generation Settings", open=False):
|
190 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
|
|
211 |
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
|
212 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
213 |
|
|
|
214 |
output_buf = gr.State()
|
215 |
|
216 |
# Example images at the bottom of the page
|
|
|
222 |
],
|
223 |
inputs=[image_prompt],
|
224 |
fn=preprocess_image,
|
225 |
+
outputs=[image_prompt],
|
226 |
run_on_click=True,
|
227 |
examples_per_page=64,
|
228 |
)
|
229 |
|
230 |
# Handlers
|
231 |
+
demo.load(start_session)
|
232 |
+
demo.unload(end_session)
|
233 |
+
|
234 |
image_prompt.upload(
|
235 |
preprocess_image,
|
236 |
inputs=[image_prompt],
|
237 |
+
outputs=[image_prompt],
|
|
|
|
|
|
|
|
|
238 |
)
|
239 |
|
240 |
generate_btn.click(
|
241 |
+
get_seed,
|
242 |
+
inputs=[randomize_seed, seed],
|
243 |
+
outputs=[seed],
|
244 |
+
).then(
|
245 |
image_to_3d,
|
246 |
+
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
247 |
outputs=[output_buf, video_output],
|
248 |
).then(
|
249 |
+
lambda: gr.Button(interactive=True),
|
250 |
outputs=[extract_glb_btn],
|
251 |
)
|
252 |
|
253 |
video_output.clear(
|
254 |
+
lambda: gr.Button(interactive=False),
|
255 |
outputs=[extract_glb_btn],
|
256 |
)
|
257 |
|
|
|
260 |
inputs=[output_buf, mesh_simplify, texture_size],
|
261 |
outputs=[model_output, download_glb],
|
262 |
).then(
|
263 |
+
lambda: gr.Button(interactive=True),
|
264 |
outputs=[download_glb],
|
265 |
)
|
266 |
|
267 |
model_output.clear(
|
268 |
+
lambda: gr.Button(interactive=False),
|
269 |
outputs=[download_glb],
|
270 |
)
|
271 |
|
272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
# Launch the Gradio app
|
274 |
if __name__ == "__main__":
|
275 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|