Spaces:
Sleeping
Sleeping
File size: 22,707 Bytes
759ff60 3612502 759ff60 c8ce6b9 04727ee c8ce6b9 50329bd 759ff60 a2d0681 759ff60 3612502 759ff60 3612502 759ff60 3612502 759ff60 3612502 759ff60 04727ee 759ff60 3612502 759ff60 3612502 759ff60 3612502 759ff60 3612502 759ff60 3612502 759ff60 3612502 759ff60 3612502 759ff60 3612502 759ff60 3612502 759ff60 3612502 759ff60 3612502 759ff60 3612502 759ff60 3612502 759ff60 3612502 11ef246 759ff60 3612502 759ff60 3612502 759ff60 3612502 759ff60 3612502 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import gradio as gr
import fitz # PyMuPDF
from langchain_community.embeddings import HuggingFaceEmbeddings
import chromadb
import uuid
from groq import Groq
import re
import json
import os
# -------------------- Core Functions --------------------
def setup_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
def setup_chromadb():
client = chromadb.PersistentClient(path="./chroma_db")
return client.get_or_create_collection(name="resumes")
def extract_text_from_resume(file):
# Get the file path from Gradio's file object
file_path = file.name
if file_path.endswith(".pdf"):
# Open the PDF file directly from the path
with fitz.open(file_path) as doc:
return "\n".join([page.get_text("text") for page in doc])
elif file_path.endswith(".txt"):
# Open the text file directly
with open(file_path, "r", encoding="utf-8") as f:
return f.read()
return ""
def extract_candidate_name(resume_text):
name_match = re.search(r"([A-Z][a-z]+\s+[A-Z][a-z]+)", resume_text[:500])
if name_match:
return name_match.group(1)
return "Candidate"
def store_resume(text, user_id):
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
for i, chunk in enumerate(chunks):
embedding = embedding_model.embed_query(chunk)
collection.add(
ids=[f"{user_id}-{i}"],
embeddings=[embedding],
metadatas=[{"text": chunk}]
)
return extract_candidate_name(text)
def retrieve_resume(user_id, query):
query_embedding = embedding_model.embed_query(query)
results = collection.query(query_embeddings=[query_embedding], n_results=3)
return "\n".join([doc["text"] for doc in results["metadatas"][0]])
def generate_groq_response(prompt, agent_type, temperature=0.7):
system_prompts = {
"zero_agent": """You are the initial interviewer. Your role is to warmly greet the candidate by name and ask general background questions to make them comfortable before transitioning to technical topics. Be conversational, friendly, and engaging. Focus on understanding their motivation, work history, and personality.""",
"technical_agent": """You are an expert technical interviewer. Analyze the candidate's resume thoroughly and ask highly relevant technical questions that demonstrate your understanding of their background. Your questions should be challenging but fair, focusing on their claimed skills and past projects. Phrase questions clearly and directly.""",
"clarification_agent": """You are a supportive interviewer who helps clarify questions when candidates need assistance. When a candidate seems confused or directly asks for clarification, explain the question in simpler terms with examples. If they give a partial answer, ask follow-up questions to help them elaborate. Your goal is to maintain conversation flow and help candidates showcase their knowledge.""",
"report_agent": """You are an interview assessment specialist. Create a detailed, constructive report of the interview without scoring or grading the candidate. Identify correct answers with green text and areas for improvement with red text. Focus on suggesting specific technical topics the candidate should study further rather than platforms or resources. Be encouraging and specific in your feedback."""
}
client = Groq(api_key=os.environ["GROQ_API_KEY"])
response = client.chat.completions.create(
model="llama-3.3-70b-versatile",
messages=[
{"role": "system", "content": system_prompts.get(agent_type, "You are an AI interview coach.")},
{"role": "user", "content": prompt}
],
temperature=temperature,
max_tokens=800
)
return response.choices[0].message.content
def strip_markdown(text):
text = re.sub(r'\*\*(.*?)\*\*', r'\1', text)
text = re.sub(r'\*(.*?)\*', r'\1', text)
text = re.sub(r'`(.*?)`', r'\1', text)
text = re.sub(r'\[(.*?)\]\((.*?)\)', r'\1', text)
text = re.sub(r'^#+\s+', '', text, flags=re.MULTILINE)
text = re.sub(r'^>\s+', '', text, flags=re.MULTILINE)
text = re.sub(r'^\s*[-*_]{3,}\s*$', '', text, flags=re.MULTILINE)
text = re.sub(r'^\s*[-*+]\s+', '• ', text, flags=re.MULTILINE)
text = re.sub(r'^\s*\d+\.\s+', '', text, flags=re.MULTILINE)
return text
def strict_agent_monitor(candidate_response):
prompt = f"""
Candidate Response: "{candidate_response}"
Check for these behaviors strictly but fairly:
1. Repeated gibberish or nonsensical keyboard smashing.
2. Harsh, rude, or aggressive language.
3. Profanity or clearly offensive content.
If clearly inappropriate (repeated profanity/aggression/gibberish), respond:
"INAPPROPRIATE: [reason]"
If minor awkwardness, occasional mistakes, or nervousness, respond simply:
"ACCEPTABLE"
Be forgiving, human-like, and flexible—only flag clear and serious issues.
Be human-like: allow up to two minor instances before marking responses as inappropriate.
Only flag as inappropriate after clear repeated offenses (3 or more times) or severe disrespect/profanity.
"""
return generate_groq_response(prompt, "technical_agent", temperature=0.1)
# -------------------- Initialize Components --------------------
embedding_model = setup_embeddings()
collection = setup_chromadb()
# -------------------- Gradio Application --------------------
class InterviewCoach:
def __init__(self):
self.user_id = str(uuid.uuid4())
self.interview_active = False
self.current_step = 0
self.interview_phase = "greeting"
self.questions = []
self.responses = []
self.candidate_name = "Candidate"
self.needs_clarification = False
self.clarification_response = None
self.uploaded_file = None
def start_interview(self, file):
if not file:
return "Please upload a resume file first", None, None
self.uploaded_file = file
self.interview_active = True
self.current_step = 0
self.interview_phase = "greeting"
self.questions = []
self.responses = []
resume_text = extract_text_from_resume(file)
self.candidate_name = store_resume(resume_text, self.user_id)
resume_data = retrieve_resume(self.user_id, "background experience")
greeting = self.zero_agent_greeting(resume_data, self.candidate_name)
self.questions.append(greeting)
return f"Interview started with {self.candidate_name}", greeting, gr.update(visible=True)
def zero_agent_greeting(self, resume_data, candidate_name):
prompt = f"""
Resume Data: {resume_data}
Candidate Name: {candidate_name}
Generate a brief, warm greeting for {candidate_name}. The greeting should:
1. Begin with "Hello [Candidate Name]"
2. Very briefly mention something from their resume (one skill or experience)
3. Ask ONE simple question about their most recent job or experience
4. Keep it extremely concise (2-3 short sentences maximum)
The greeting must be brief as it will be converted to voice later.
"""
return generate_groq_response(prompt, "zero_agent", temperature=0.7)
def technical_agent_question(self, resume_data, interview_history, question_count):
difficulty = "introductory" if question_count < 2 else "intermediate" if question_count < 4 else "advanced"
prompt = f"""
Resume Data: {resume_data}
Interview History: {interview_history}
Question Number: {question_count + 1}
Difficulty: {difficulty}
Generate a relevant technical interview question based on the candidate's resume. The question should:
1. Be specific to skills or experiences mentioned in their resume
2. Feel like it's coming from someone who has read their background
3. Be appropriately challenging based on their experience level
4. Be directly relevant to their field
5. Be clearly phrased as a question (no preambles or explanations)
"""
return generate_groq_response(prompt, "technical_agent", temperature=0.7)
def clarification_agent_response(self, question, candidate_response, resume_data):
needs_clarification = any(phrase in candidate_response.lower() for phrase in
["i don't understand", "can you explain", "not sure", "what do you mean",
"confused", "unclear", "can you clarify", "don't know what", "?"])
if needs_clarification:
prompt = f"""
Original Question: {question}
Candidate Response: {candidate_response}
Resume Data: {resume_data}
The candidate needs clarification. Your task is to:
1. Acknowledge their confusion
2. Explain the question in simpler terms
3. Provide a concrete example to illustrate what you're asking
4. Rephrase the question in a more approachable way
IMPORTANT: Respond in a direct, conversational manner WITHOUT any explanation of your reasoning.
"""
return generate_groq_response(prompt, "clarification_agent", temperature=0.6)
else:
prompt = f"""
Original Question: {question}
Candidate Response: {candidate_response}
Resume Data: {resume_data}
Evaluate if this response is complete or needs a follow-up.
If the response is thorough and complete, respond with "COMPLETE".
If the response is partial or could benefit from elaboration, provide a specific follow-up question.
If the response is off-topic, provide a more specific version of the original question.
IMPORTANT: If providing a follow-up question, give ONLY the question itself without any explanation of why you're asking it.
"""
follow_up = generate_groq_response(prompt, "clarification_agent", temperature=0.6)
if "COMPLETE" in follow_up:
return None
else:
question_match = re.search(r"(?:To help|I would|Let me|Could you|What|How|Why|Can you|Tell me|Describe|Explain).*\?", follow_up)
if question_match:
return question_match.group(0)
return follow_up
def report_agent_feedback(self, interview_data, resume_data):
questions_answers = "\n\n".join([
f"Q{i+1}: {qa['question']}\nAnswer: {qa['answer']}"
for i, qa in enumerate(interview_data)
])
prompt = f"""
Resume Data: {resume_data}
Interview Transcript:
{questions_answers}
Generate a detailed, visually appealing interview report that:
1. Analyzes each answer without scoring or grading
2. Identifies correct information (prefix with "CORRECT: ")
3. Identifies areas for improvement (prefix with "IMPROVE: ")
4. Recommends 3-5 specific technical topics (not platforms) the candidate should focus on
Format guidelines:
- Use emojis to make sections more engaging (✅ for correct points, 💡 for improvement areas)
- ABSOLUTELY NO MARKDOWN SYNTAX - use plain text only without asterisks, backticks, hashes, etc.
- Use simple formatting that works well in HTML
- For each question, provide concise bullet-point style feedback
- Keep language encouraging and constructive
Format the report with these sections:
- QUESTION ANALYSIS (for each question)
- KEY STRENGTHS
- FOCUS AREAS
- RECOMMENDED TOPICS
Do not include any numerical scores or grades.
"""
feedback = generate_groq_response(prompt, "report_agent", temperature=0.7)
return strip_markdown(feedback)
def process_response(self, answer):
if not answer.strip():
return "Please provide a response", None, None
appropriateness_check = strict_agent_monitor(answer)
if "INAPPROPRIATE:" in appropriateness_check:
reason = appropriateness_check.split("INAPPROPRIATE:")[1].strip()
self.interview_active = False
return f"⚠️ Interview Terminated: {reason}", None, gr.update(visible=False)
current_question = self.questions[self.current_step]
if self.needs_clarification:
self.needs_clarification = False
self.responses[-1]['clarification'] = self.clarification_response
self.responses[-1]['clarification_response'] = answer
self.clarification_response = None
if self.interview_phase == "greeting":
self.interview_phase = "technical"
resume_data = retrieve_resume(self.user_id, "technical skills")
new_question = self.technical_agent_question(resume_data, "", 0)
self.questions.append(new_question)
self.current_step += 1
return None, new_question, None
elif len(self.responses) >= 6:
self.interview_active = False
return self.generate_final_report(), None, gr.update(visible=False)
else:
interview_history = "\n".join([
f"Q: {item['question']}\nA: {item['answer']}"
for item in self.responses
])
resume_data = retrieve_resume(self.user_id, "technical skills")
new_question = self.technical_agent_question(
resume_data,
interview_history,
len(self.responses) - 1
)
self.questions.append(new_question)
self.current_step += 1
return None, new_question, None
else:
self.responses.append({
'question': current_question,
'answer': answer
})
resume_data = retrieve_resume(self.user_id, current_question)
clarification = self.clarification_agent_response(
current_question,
answer,
resume_data
)
if clarification:
self.needs_clarification = True
self.clarification_response = clarification
return None, clarification, None
else:
if self.interview_phase == "greeting":
self.interview_phase = "technical"
resume_data = retrieve_resume(self.user_id, "technical skills")
new_question = self.technical_agent_question(resume_data, "", 0)
self.questions.append(new_question)
self.current_step += 1
return None, new_question, None
elif len(self.responses) >= 6:
self.interview_active = False
return self.generate_final_report(), None, gr.update(visible=False)
else:
interview_history = "\n".join([
f"Q: {item['question']}\nA: {item['answer']}"
for item in self.responses
])
resume_data = retrieve_resume(self.user_id, "technical skills")
new_question = self.technical_agent_question(
resume_data,
interview_history,
len(self.responses) - 1
)
self.questions.append(new_question)
self.current_step += 1
return None, new_question, None
def generate_final_report(self):
resume_data = retrieve_resume(self.user_id, "complete profile")
feedback = self.report_agent_feedback(self.responses, resume_data)
processed_feedback = []
for qa_index, qa in enumerate(self.responses):
question_section = f"Q{qa_index+1}: {qa['question']}"
answer_section = f"Answer: {qa['answer']}"
correct_parts = re.findall(r"CORRECT:(.*?)(?=IMPROVE:|$)", feedback, re.DOTALL)
improve_parts = re.findall(r"IMPROVE:(.*?)(?=CORRECT:|$)", feedback, re.DOTALL)
correct_html = ""
if qa_index < len(correct_parts) and correct_parts[qa_index].strip():
correct_text = strip_markdown(correct_parts[qa_index].strip())
correct_html = f"""
<div style="color: #4CD964; border-left: 4px solid #4CD964; padding-left: 1rem; margin: 1rem 0;">
<h4 style="color: #4CD964; margin:0;">✅ Strong Points</h4>
<p style="color: #CCCCCC; margin-top:0.5rem;">{correct_text}</p>
</div>
"""
improve_html = ""
if qa_index < len(improve_parts) and improve_parts[qa_index].strip():
improve_html = f"""
<div style="color: #FF3B30; border-left: 4px solid #FF3B30; padding-left: 1rem; margin: 1rem 0;">
<h4 style="color: #FF3B30; margin:0;">💡 Areas to Develop</h4>
<p style="color: #CCCCCC; margin-top:0.5rem;">{improve_parts[qa_index].strip()}</p>
</div>
"""
processed_feedback.append({
"question": question_section,
"answer": answer_section,
"correct_html": correct_html,
"improve_html": improve_html
})
topic_match = re.search(r"RECOMMENDED TOPICS:(.*?)(?=$)", feedback, re.DOTALL)
topics = []
if topic_match:
topics_text = topic_match.group(1).strip()
topics = [topic.strip() for topic in re.split(r'\d+\.\s+', topics_text) if topic.strip()]
topics = [topic for topic in topics if len(topic) > 3]
report_html = """
<div style="background:#1A1A1A; border-radius:15px; padding:2rem; margin:1rem 0; border:1px solid #333333;">
<h3 style='color: #4A90E2; margin-bottom: 1.5rem;'>Interview Summary Report</h3>
<div style="background:#2D2D2D; padding:1.5rem; border-radius:10px; margin:2rem 0;">
<h4 style="margin:0; color:#FFFFFF;">Interview Overview</h4>
<p style="margin:1rem 0 0 0; color:#CCCCCC;">Below is a detailed breakdown of your interview responses with constructive feedback to help you improve your technical skills.</p>
</div>
<h4 style='color: #FFFFFF; margin-bottom:1rem;'>Question-by-Question Analysis</h4>
"""
for idx, response in enumerate(processed_feedback):
report_html += f"""
<div style='background:#2D2D2D; border-radius:10px; padding:1.5rem; margin:1rem 0;'>
<details>
<summary style='color: #FFFFFF; font-weight:500; cursor:pointer;'>Question {idx+1}</summary>
<div style='margin-top:1rem;'>
<p style='font-weight: 500; color: #FFFFFF; font-size: 1.1rem;'>❝{response['question']}❞</p>
<div style='background: #333333; padding:1rem; border-radius:8px; margin:1rem 0;'>
<p style='color: #888888; margin:0;'>Your Answer:</p>
<p style='color: #FFFFFF; margin:0.5rem 0;'>{response['answer']}</p>
</div>
{response['correct_html']}
{response['improve_html']}
</div>
</details>
</div>
"""
if topics:
report_html += """
<div style="background:#2D2D2D; padding:1.5rem; border-radius:10px; margin:1rem 0;">
<h4 style="margin:0; color:#FFFFFF;">Recommended Topics to Study</h4>
<p style="margin:1rem 0; color:#CCCCCC;">Based on your interview responses, we recommend focusing on these key areas:</p>
<div style="margin-top:1rem;">
"""
for topic in topics:
report_html += f"""
<span style="display:inline-block; background:#333333; padding:5px 10px; margin:5px; border-radius:15px; font-size:0.8rem;">{topic}</span>
"""
report_html += """
</div>
</div>
"""
report_html += "</div>"
return report_html
# Create the Gradio interface
coach = InterviewCoach()
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="gray")) as demo:
gr.Markdown("# 💼 MockMate-Your personal AI mock interview buddy.")
gr.Markdown("Upload your resume for a personalized mock interview session")
with gr.Row():
with gr.Column(scale=1):
file_upload = gr.File(label="Upload Resume (PDF or TXT)", file_types=[".pdf", ".txt"])
start_btn = gr.Button("🚀 Start Interview Session")
status = gr.Textbox(label="Status", interactive=False)
with gr.Column(scale=2):
question_display = gr.Textbox(label="Current Question", interactive=False, lines=3)
answer_input = gr.Textbox(label="Your Response", lines=5, visible=False)
submit_btn = gr.Button("Submit Response", visible=False)
report_display = gr.HTML(label="Interview Report", visible=False)
def start_interview(file):
return coach.start_interview(file)
def process_response(answer):
return coach.process_response(answer)
start_btn.click(
start_interview,
inputs=[file_upload],
outputs=[status, question_display, answer_input]
).then(
lambda: gr.update(visible=True),
outputs=[submit_btn]
)
submit_btn.click(
process_response,
inputs=[answer_input],
outputs=[status, question_display, submit_btn]
).then(
lambda report: gr.update(value=report, visible=True) if report else None,
inputs=[report_display],
outputs=[report_display]
)
demo.launch() |