Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
from langchain import PromptTemplate, LLMChain | |
from langchain_together import Together | |
import pdfplumber | |
# Set the API key with double quotes | |
os.environ['TOGETHER_API_KEY'] = "d88cb7414e4039a84d2ed63f1b47daaaa4230c4c53a422045d8a30a9a3bc87d8" | |
def extract_text_from_pdf(pdf_file, max_pages=16): | |
text = "" | |
with pdfplumber.open(pdf_file) as pdf: | |
for i, page in enumerate(pdf.pages): | |
if i >= max_pages: | |
break | |
text += page.extract_text() + "\n" | |
return text | |
def Bot(text, question): | |
chat_template = """ | |
Based on the provided context: {text} | |
Please answer the following question: {Questions} | |
Only provide answers that are directly related to the context. If the question is unrelated, respond with "I don't know". | |
""" | |
prompt = PromptTemplate( | |
input_variables=['text', 'Questions'], | |
template=chat_template | |
) | |
llama3 = Together(model="meta-llama/Llama-3-70b-chat-hf", max_tokens=50) | |
Generated_chat = LLMChain(llm=llama3, prompt=prompt) | |
try: | |
response = Generated_chat.invoke({ | |
"text": text, | |
"Questions": question | |
}) | |
response_text = response['text'] | |
response_text = response_text.replace("assistant", "") | |
# Post-processing to handle repeated words and ensure completeness | |
words = response_text.split() | |
seen = set() | |
filtered_words = [word for word in words if word.lower() not in seen and not seen.add(word.lower())] | |
response_text = ' '.join(filtered_words) | |
response_text = response_text.strip() # Ensuring no extra spaces at the ends | |
if not response_text.endswith('.'): | |
response_text += '.' | |
return response_text | |
except Exception as e: | |
return f"Error in generating response: {e}" | |
def ChatBot(document, question): | |
greetings = ["hi", "hello", "hey", "greetings", "what's up", "howdy"] | |
question_lower = question.lower().strip() | |
if question_lower in greetings or any(question_lower.startswith(greeting) for greeting in greetings): | |
return "Hello! How can I assist you with the document today?" | |
text = extract_text_from_pdf(document) | |
response = Bot(text, question) | |
return response | |
st.title("PDF ChatBot") | |
uploaded_file = st.file_uploader("Upload PDF Document", type="pdf") | |
question = st.text_input("Ask a Question", placeholder="Type your question here...") | |
if uploaded_file and question: | |
with st.spinner('Processing...'): | |
response = ChatBot(uploaded_file, question) | |
st.write(response) | |
# --- Logo --- | |
st.sidebar.image("profile.jpg", width=200) | |
st.sidebar.title("Haseeb Ahmed") | |
st.sidebar.write("AI/ML Engineer") | |
st.sidebar.markdown("[Visit us at](https://www.linkedin.com/in/muhammad-haseeb-ahmed-1954b5230/)") |