Jekyll2000
commited on
Commit
•
2f98bd3
1
Parent(s):
51076df
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras import layers, models
|
3 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
4 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Load the IMDb dataset
|
8 |
+
imdb = tf.keras.datasets.imdb
|
9 |
+
vocab_size = 10000
|
10 |
+
maxlen = 100
|
11 |
+
(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=vocab_size)
|
12 |
+
X_train = pad_sequences(X_train, maxlen=maxlen)
|
13 |
+
X_test = pad_sequences(X_test, maxlen=maxlen)
|
14 |
+
|
15 |
+
# Define the model
|
16 |
+
model = models.Sequential([
|
17 |
+
layers.Embedding(vocab_size, 16, input_length=maxlen),
|
18 |
+
layers.GlobalAveragePooling1D(),
|
19 |
+
layers.Dense(16, activation='relu'),
|
20 |
+
layers.Dense(1, activation='sigmoid')
|
21 |
+
])
|
22 |
+
|
23 |
+
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
24 |
+
model.fit(X_train, y_train, epochs=10, batch_size=512, validation_data=(X_test, y_test), verbose=1)
|
25 |
+
|
26 |
+
# Save the model
|
27 |
+
model.save("sentiment_analysis_model.h5")
|
28 |
+
|
29 |
+
# Function to predict sentiment
|
30 |
+
def predict_sentiment(text):
|
31 |
+
tokenizer = Tokenizer(num_words=vocab_size)
|
32 |
+
tokenizer.fit_on_texts([text])
|
33 |
+
sequence = tokenizer.texts_to_sequences([text])
|
34 |
+
padded_sequence = pad_sequences(sequence, maxlen=maxlen)
|
35 |
+
|
36 |
+
prediction = model.predict(padded_sequence)[0][0]
|
37 |
+
sentiment = "Positive" if prediction >= 0.5 else "Negative"
|
38 |
+
confidence = round(prediction, 4)
|
39 |
+
|
40 |
+
return sentiment, confidence
|
41 |
+
|
42 |
+
# Gradio Interface
|
43 |
+
def gradio_predict(text):
|
44 |
+
sentiment, confidence = predict_sentiment(text)
|
45 |
+
return f"Sentiment: {sentiment}, Confidence: {confidence:.4f}"
|
46 |
+
|
47 |
+
# Create Gradio Interface
|
48 |
+
interface = gr.Interface(fn=gradio_predict,
|
49 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."),
|
50 |
+
outputs="text",
|
51 |
+
title="Sentiment Analysis",
|
52 |
+
description="Enter a movie review or any text to analyze its sentiment.")
|
53 |
+
|
54 |
+
# Launch the Gradio Interface
|
55 |
+
interface.launch()
|