Spaces:
Sleeping
Sleeping
Jekyll2000
commited on
Commit
•
7e996c7
1
Parent(s):
2a20ce6
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,4 @@
|
|
1 |
-
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
|
2 |
import streamlit as st
|
3 |
-
from langchain.prompts import (
|
4 |
-
ChatPromptTemplate,
|
5 |
-
HumanMessagePromptTemplate,
|
6 |
-
MessagesPlaceholder,
|
7 |
-
)
|
8 |
-
from more_itertools import chunked
|
9 |
-
|
10 |
-
from langserve import RemoteRunnable
|
11 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
12 |
import os
|
13 |
from langchain import PromptTemplate
|
@@ -15,17 +6,17 @@ from langchain import LLMChain
|
|
15 |
from langchain_together import Together
|
16 |
import re
|
17 |
import pdfplumber
|
18 |
-
# Set the API key with double quotes
|
19 |
|
|
|
20 |
os.environ['TOGETHER_API_KEY'] = "5653bbfbaf1f7c1438206f18e5dfc2f5992b8f0b6aa9796b0131ea454648ccde"
|
21 |
|
22 |
text = ""
|
23 |
max_pages = 16
|
24 |
with pdfplumber.open("AI Engineer Test.pdf") as pdf:
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
|
30 |
def Bot(Questions):
|
31 |
chat_template = """
|
@@ -40,52 +31,42 @@ def Bot(Questions):
|
|
40 |
llama3 = Together(model="meta-llama/Llama-3-70b-chat-hf", max_tokens=250)
|
41 |
Generated_chat = LLMChain(llm=llama3, prompt=prompt)
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def ChatBot(Questions):
|
45 |
-
|
46 |
# Check if the input question is a greeting
|
47 |
-
|
48 |
-
|
49 |
return "Hello! How can I assist you with the document today?"
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
"""
|
54 |
-
# --- Logo ---
|
55 |
-
st.set_page_config(
|
56 |
-
page_title="AI Engineer Test Chatbot",
|
57 |
-
page_icon="Insight Therapy Solutions.png",
|
58 |
-
layout="wide",
|
59 |
-
)
|
60 |
-
st.sidebar.image("Insight Therapy Solutions.png", width=200)
|
61 |
|
62 |
-
|
63 |
-
st.
|
64 |
-
st.
|
65 |
-
""
|
66 |
-
|
67 |
-
st.
|
68 |
-
|
69 |
-
<style>
|
70 |
-
.css-18e3th9 {
|
71 |
-
padding-top: 3rem;
|
72 |
-
}
|
73 |
-
.css-1d391kg {
|
74 |
-
text-align: center;
|
75 |
-
}
|
76 |
-
.stButton>button {
|
77 |
-
background-color: #4CAF50;
|
78 |
-
color: white;
|
79 |
-
border: none;
|
80 |
-
padding: 15px 32px;
|
81 |
-
text-align: center;
|
82 |
-
text-decoration: none;
|
83 |
-
display: inline-block;
|
84 |
-
font-size: 16px;
|
85 |
-
margin: 4px 2px;
|
86 |
-
cursor: pointer;
|
87 |
-
border-radius: 8px;
|
88 |
-
}
|
89 |
-
</style>
|
90 |
-
, unsafe_allow_html=True
|
91 |
-
)
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import os
|
4 |
from langchain import PromptTemplate
|
|
|
6 |
from langchain_together import Together
|
7 |
import re
|
8 |
import pdfplumber
|
|
|
9 |
|
10 |
+
# Set the API key
|
11 |
os.environ['TOGETHER_API_KEY'] = "5653bbfbaf1f7c1438206f18e5dfc2f5992b8f0b6aa9796b0131ea454648ccde"
|
12 |
|
13 |
text = ""
|
14 |
max_pages = 16
|
15 |
with pdfplumber.open("AI Engineer Test.pdf") as pdf:
|
16 |
+
for i, page in enumerate(pdf.pages):
|
17 |
+
if i >= max_pages:
|
18 |
+
break
|
19 |
+
text += page.extract_text() + "\n"
|
20 |
|
21 |
def Bot(Questions):
|
22 |
chat_template = """
|
|
|
31 |
llama3 = Together(model="meta-llama/Llama-3-70b-chat-hf", max_tokens=250)
|
32 |
Generated_chat = LLMChain(llm=llama3, prompt=prompt)
|
33 |
|
34 |
+
try:
|
35 |
+
response = Generated_chat.invoke({
|
36 |
+
"text": text,
|
37 |
+
"Questions": Questions
|
38 |
+
})
|
39 |
+
|
40 |
+
response_text = response['text']
|
41 |
+
|
42 |
+
response_text = response_text.replace("assistant", "")
|
43 |
+
|
44 |
+
# Post-processing to handle repeated words and ensure completeness
|
45 |
+
words = response_text.split()
|
46 |
+
seen = set()
|
47 |
+
filtered_words = [word for word in words if word.lower() not in seen and not seen.add(word.lower())]
|
48 |
+
response_text = ' '.join(filtered_words)
|
49 |
+
response_text = response_text.strip() # Ensuring no extra spaces at the ends
|
50 |
+
if not response_text.endswith('.'):
|
51 |
+
response_text += '.'
|
52 |
+
|
53 |
+
return response_text
|
54 |
+
except Exception as e:
|
55 |
+
return f"Error in generating response: {e}"
|
56 |
+
|
57 |
def ChatBot(Questions):
|
58 |
+
greetings = ["hi", "hello", "hey", "greetings", "what's up", "howdy"]
|
59 |
# Check if the input question is a greeting
|
60 |
+
question_lower = Questions.lower().strip()
|
61 |
+
if question_lower in greetings or any(question_lower.startswith(greeting) for greeting in greetings):
|
62 |
return "Hello! How can I assist you with the document today?"
|
63 |
+
else:
|
64 |
+
response = Bot(Questions)
|
65 |
+
return response.translate(str.maketrans('', '', '\n'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
# Streamlit UI
|
68 |
+
st.title("Chatbot")
|
69 |
+
Questions = st.text_input("Ask a question:")
|
70 |
+
if st.button("Submit"):
|
71 |
+
answer = ChatBot(Questions)
|
72 |
+
st.write(answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|