Spaces:
Running
Running
Commit
Β·
c89c654
1
Parent(s):
ca643ea
update
Browse files
app.py
CHANGED
@@ -19,45 +19,45 @@ load_dotenv()
|
|
19 |
webhook_url = os.environ.get("WEBHOOK_URL")
|
20 |
|
21 |
file_name_list = [
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
]
|
28 |
|
29 |
sheet_name_list = [
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
]
|
34 |
|
35 |
metric_list = [
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
]
|
40 |
|
41 |
model_size_list = [
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
]
|
48 |
|
49 |
metric_to_sheet = {
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
}
|
54 |
|
55 |
model_size_to_file_name = {
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
}
|
62 |
|
63 |
about_md = """
|
@@ -100,12 +100,12 @@ In fact, the model rankings obtained through Uncheatable Eval are very stable. F
|
|
100 |
|
101 |
|
102 |
def rename_columns(df):
|
103 |
-
df.columns = [col.rsplit(
|
104 |
return df
|
105 |
|
106 |
|
107 |
def get_folders_matching_format(directory):
|
108 |
-
pattern = re.compile(r
|
109 |
folders = []
|
110 |
|
111 |
if not os.path.exists(directory):
|
@@ -131,52 +131,60 @@ def get_unique_column_names(all_data):
|
|
131 |
#
|
132 |
# return list(column_names.keys())
|
133 |
|
134 |
-
return [
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
|
138 |
def color_cell(value):
|
139 |
-
return
|
140 |
-
|
141 |
-
|
142 |
-
def update_table(
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
150 |
target_data = all_data[period]
|
151 |
target_metric = metric_to_sheet[metric]
|
152 |
|
153 |
if models:
|
154 |
target_model_size = [model_size_to_file_name[model] for model in models]
|
155 |
combined_data = pd.concat([target_data[model][target_metric] for model in target_model_size], axis=0)
|
156 |
-
combined_data[
|
157 |
|
158 |
# Filter models based on the size range
|
159 |
-
combined_data = combined_data[combined_data[
|
160 |
|
161 |
combined_data.reset_index(drop=True, inplace=True)
|
162 |
|
163 |
-
if
|
164 |
-
relevant_columns = [col for col in visible_columns if
|
165 |
-
col not in ['Name', 'Parameters Count (B)', 'Average (The lower the better)']]
|
166 |
if len(combined_data) > 0:
|
167 |
-
combined_data[
|
168 |
|
169 |
if len(combined_data) > 0:
|
170 |
sorted_data = combined_data.sort_values(by=sort_by, ascending=ascending)
|
171 |
-
sorted_data = sorted_data.rename(columns={
|
172 |
-
sorted_data = sorted_data.rename(columns={
|
173 |
-
visible_columns = [
|
174 |
filtered_data = sorted_data[visible_columns]
|
175 |
|
176 |
-
filtered_data.columns = [col.replace(
|
177 |
|
178 |
-
formatter = {col: "{:.3f}" for col in filtered_data.columns if
|
179 |
-
filtered_data[col].dtype in ['float64', 'float32']}
|
180 |
|
181 |
# color gradient
|
182 |
colors = ["#63be7b", "#ffffff", "#f8696b"]
|
@@ -184,7 +192,7 @@ def update_table(period: str,
|
|
184 |
vmin = {}
|
185 |
vmax = {}
|
186 |
for column in filtered_data.columns:
|
187 |
-
if column in [
|
188 |
continue
|
189 |
col_values = filtered_data[column]
|
190 |
if len(col_values) > 1:
|
@@ -193,14 +201,12 @@ def update_table(period: str,
|
|
193 |
vmax[column] = second_largest
|
194 |
|
195 |
target_color_columns = []
|
196 |
-
if
|
197 |
-
target_color_columns.append(
|
198 |
-
if
|
199 |
-
target_color_columns.extend([col for col in filtered_data.columns if
|
200 |
-
col not in ['Name', 'Params (B)', 'Average (lower=better)']])
|
201 |
-
|
202 |
|
203 |
-
styler = filtered_data.style.format(formatter).applymap(color_cell, subset=[
|
204 |
|
205 |
for column in target_color_columns:
|
206 |
if column in vmin and column in vmax: # Ensure that the vmin and vmax dicts contain the column
|
@@ -212,30 +218,35 @@ def update_table(period: str,
|
|
212 |
else:
|
213 |
return pd.DataFrame()
|
214 |
|
|
|
215 |
def create_world_languages_gdp_chart():
|
216 |
-
languages = [
|
217 |
shares = [27, 18, 8, 6, 5, 4, 3, 2, 2, 2, 23]
|
218 |
-
colors = [
|
219 |
-
|
220 |
-
fig = go.Figure(
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
230 |
|
231 |
fig.update_layout(
|
232 |
title={
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
},
|
240 |
showlegend=False,
|
241 |
width=700,
|
@@ -245,6 +256,7 @@ def create_world_languages_gdp_chart():
|
|
245 |
|
246 |
return fig
|
247 |
|
|
|
248 |
def check_model_exists(model_id):
|
249 |
api = HfApi()
|
250 |
try:
|
@@ -260,14 +272,14 @@ def check_model_exists(model_id):
|
|
260 |
|
261 |
|
262 |
def submit_model(name):
|
263 |
-
if
|
264 |
return f"# ERROR: Model {name} does not exist on Hugging Face!"
|
265 |
|
266 |
try:
|
267 |
response = requests.post(webhook_url, json={"content": name})
|
268 |
if response.status_code == 200:
|
269 |
response_data = response.json()
|
270 |
-
if response_data.get(
|
271 |
return "# SUCCESS: We will check the model as soon as possible. Thank you for your submission!"
|
272 |
else:
|
273 |
return f"# ERROR: {response_data.get('message', 'Unknown error')}"
|
@@ -281,54 +293,59 @@ def submit_model(name):
|
|
281 |
|
282 |
|
283 |
def create_scaling_plot(all_data, period):
|
284 |
-
selected_columns = [
|
285 |
target_data = all_data[period]
|
286 |
new_df = pd.DataFrame()
|
287 |
|
288 |
for size in target_data.keys():
|
289 |
-
new_df = pd.concat([new_df, target_data[size][
|
290 |
|
291 |
-
new_df.rename(columns={
|
292 |
-
'Parameters Count (B)': 'Params(B)',
|
293 |
-
'Average (The lower the better)': 'Compression Rate (%)'
|
294 |
-
}, inplace=True)
|
295 |
|
296 |
-
new_df[
|
297 |
-
new_df[
|
298 |
|
299 |
-
fig = px.scatter(
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
306 |
|
307 |
fig.update_traces(
|
308 |
hovertemplate="<b>%{hovertext}</b><br>Params(B): %{customdata[0]:.2f} B<br>Compression Rate (%): %{customdata[1]:.2f}<extra></extra>"
|
309 |
)
|
310 |
-
|
311 |
names_to_connect_dict = {
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
}
|
317 |
|
318 |
-
names_to_connect = names_to_connect_dict.get(period, names_to_connect_dict[
|
319 |
-
|
320 |
-
connection_points = new_df[new_df[
|
321 |
|
322 |
-
new_df[
|
323 |
|
324 |
-
fig.update_traces(marker=dict(color=new_df[
|
325 |
|
326 |
-
X = connection_points[
|
327 |
-
y = connection_points[
|
328 |
model = LinearRegression().fit(X, y)
|
329 |
|
330 |
-
x_min = connection_points[
|
331 |
-
x_max = connection_points[
|
332 |
extended_x = np.linspace(x_min, x_max * 1.5, 100)
|
333 |
extended_x_original = np.exp(extended_x)
|
334 |
trend_line_y = model.predict(extended_x.reshape(-1, 1))
|
@@ -337,34 +354,29 @@ def create_scaling_plot(all_data, period):
|
|
337 |
trend_line = go.Scatter(
|
338 |
x=extended_x,
|
339 |
y=trend_line_y,
|
340 |
-
mode=
|
341 |
-
line=dict(color=
|
342 |
-
name=
|
343 |
-
hovertemplate=
|
344 |
-
|
345 |
-
customdata=np.stack((extended_x_original, trend_line_y_original), axis=-1)
|
346 |
)
|
347 |
|
348 |
fig.add_trace(trend_line)
|
349 |
|
350 |
-
x_min = new_df[
|
351 |
-
x_max = new_df[
|
352 |
x_tick_vals = np.geomspace(x_min, x_max, num=5)
|
353 |
x_tick_text = [f"{val:.1f}" for val in x_tick_vals]
|
354 |
|
355 |
-
y_min = new_df[
|
356 |
-
y_max = new_df[
|
357 |
y_tick_vals = np.geomspace(y_min, y_max, num=5)
|
358 |
y_tick_text = [f"{val:.1f}" for val in y_tick_vals]
|
359 |
|
360 |
-
fig.update_xaxes(tickvals=np.log(x_tick_vals), ticktext=x_tick_text, title=
|
361 |
-
fig.update_yaxes(tickvals=np.log(y_tick_vals), ticktext=y_tick_text, title=
|
362 |
-
autorange='reversed')
|
363 |
|
364 |
-
fig.update_layout(
|
365 |
-
xaxis=dict(showgrid=True, zeroline=False),
|
366 |
-
yaxis=dict(showgrid=True, zeroline=False)
|
367 |
-
)
|
368 |
|
369 |
fig.update_traces(marker=dict(size=12))
|
370 |
|
@@ -384,8 +396,7 @@ def read_all_data(folder_name):
|
|
384 |
all_data[folder_name][file_name] = {}
|
385 |
for sheet_name in sheet_name_list:
|
386 |
final_file_name = os.path.join(folder, file_name)
|
387 |
-
all_data[folder_name][file_name][sheet_name] = rename_columns(
|
388 |
-
pd.read_excel(final_file_name + '.xlsx', sheet_name=sheet_name))
|
389 |
|
390 |
return all_data, time_list
|
391 |
|
@@ -404,7 +415,7 @@ def read_all_data(folder_name):
|
|
404 |
# return mutilange_data, time_list
|
405 |
|
406 |
|
407 |
-
all_data, time_list = read_all_data(
|
408 |
# muti_lang_data, muti_lang_time_list = read_mutilange_data()
|
409 |
|
410 |
time_list.sort()
|
@@ -415,11 +426,13 @@ initial_period = last_period
|
|
415 |
initial_models = model_size_list
|
416 |
initial_metric = metric_list[0]
|
417 |
initial_columns = get_unique_column_names(all_data)
|
418 |
-
|
|
|
|
|
419 |
initial_size_range = [0, 15]
|
420 |
initial_data = update_table(initial_period, initial_models, initial_metric, initial_columns, initial_colors, initial_size_range)
|
421 |
|
422 |
-
css =
|
423 |
.gradio-container {
|
424 |
max-width: 95% !important;
|
425 |
}
|
@@ -431,7 +444,7 @@ css = '''
|
|
431 |
word-break: break-word;
|
432 |
}
|
433 |
|
434 |
-
|
435 |
|
436 |
TITLE_HTML = '<h1 style="text-align:center"><span style="font-size:1.3em">π LLM Compression Leaderboard</span></h1>'
|
437 |
SUBTITLE_HTML = "<h1 style='text-align:center'><span style='font-size:0.8em'>Welcome to Uncheatable Eval LLM Compression Leaderboard, where fancy fine-tuning and cheating wonβt work π«; only compute π», data π, and real innovation π₯ can prevail!</span></h1>"
|
@@ -448,37 +461,36 @@ with gr.Blocks(css=css) as demo:
|
|
448 |
size_range_slider = RangeSlider(minimum=0, maximum=15, value=[0, 15], step=0.1, label="Model Size Range")
|
449 |
metric_selector = gr.Dropdown(label="Metric", choices=metric_list, value=metric_list[0])
|
450 |
with gr.Column():
|
451 |
-
color_selector = gr.CheckboxGroup(label="Colored Columns",
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
outputs=table)
|
482 |
|
483 |
with gr.Tab("π MultiLang"):
|
484 |
gr.Markdown("## Coming soon...")
|
@@ -499,13 +511,9 @@ with gr.Blocks(css=css) as demo:
|
|
499 |
with gr.Tab("π Submit"):
|
500 |
with gr.Group():
|
501 |
with gr.Row():
|
502 |
-
model_name = gr.Textbox(max_lines=1,
|
503 |
-
placeholder="Enter model name...",
|
504 |
-
show_label=False,
|
505 |
-
scale=4)
|
506 |
submit = gr.Button("Submit", variant="primary", scale=0)
|
507 |
-
output = gr.Markdown(
|
508 |
-
"# Enter a public HF repo id, then hit Submit to add it to the evaluation queue.")
|
509 |
|
510 |
submit.click(fn=submit_model, inputs=model_name, outputs=output)
|
511 |
|
|
|
19 |
webhook_url = os.environ.get("WEBHOOK_URL")
|
20 |
|
21 |
file_name_list = [
|
22 |
+
"14b",
|
23 |
+
"9b",
|
24 |
+
"7b",
|
25 |
+
"3b",
|
26 |
+
"1b5",
|
27 |
]
|
28 |
|
29 |
sheet_name_list = [
|
30 |
+
"cr",
|
31 |
+
"bpc",
|
32 |
+
"bpb",
|
33 |
]
|
34 |
|
35 |
metric_list = [
|
36 |
+
"Compression Rate (%)",
|
37 |
+
"Bits Per Character (BPC)",
|
38 |
+
"Bits Per Byte (BPB)",
|
39 |
]
|
40 |
|
41 |
model_size_list = [
|
42 |
+
"~14B",
|
43 |
+
"~9B",
|
44 |
+
"~7B",
|
45 |
+
"~3B",
|
46 |
+
"~1.5B",
|
47 |
]
|
48 |
|
49 |
metric_to_sheet = {
|
50 |
+
"Compression Rate (%)": "cr",
|
51 |
+
"Bits Per Character (BPC)": "bpc",
|
52 |
+
"Bits Per Byte (BPB)": "bpb",
|
53 |
}
|
54 |
|
55 |
model_size_to_file_name = {
|
56 |
+
"~14B": "14b",
|
57 |
+
"~9B": "9b",
|
58 |
+
"~7B": "7b",
|
59 |
+
"~3B": "3b",
|
60 |
+
"~1.5B": "1b5",
|
61 |
}
|
62 |
|
63 |
about_md = """
|
|
|
100 |
|
101 |
|
102 |
def rename_columns(df):
|
103 |
+
df.columns = [col.rsplit("_", maxsplit=1)[0] for col in df.columns]
|
104 |
return df
|
105 |
|
106 |
|
107 |
def get_folders_matching_format(directory):
|
108 |
+
pattern = re.compile(r"^\d{4}-\d{2}$")
|
109 |
folders = []
|
110 |
|
111 |
if not os.path.exists(directory):
|
|
|
131 |
#
|
132 |
# return list(column_names.keys())
|
133 |
|
134 |
+
return [
|
135 |
+
"ao3_\u200benglish",
|
136 |
+
"bbc_\u200bnews",
|
137 |
+
"wikipedia_\u200benglish",
|
138 |
+
"arxiv_\u200bcomputer_\u200bscience",
|
139 |
+
"arxiv_\u200bphysics",
|
140 |
+
"github_\u200bcpp",
|
141 |
+
"github_\u200bpython",
|
142 |
+
"ao3_\u200bchinese",
|
143 |
+
]
|
144 |
|
145 |
|
146 |
def color_cell(value):
|
147 |
+
return "background-color: #fffdd0" if pd.notna(value) else "default"
|
148 |
+
|
149 |
+
|
150 |
+
def update_table(
|
151 |
+
period: str,
|
152 |
+
models: list,
|
153 |
+
metric: str,
|
154 |
+
visible_columns: list,
|
155 |
+
color_columns: list,
|
156 |
+
size_range: list,
|
157 |
+
sort_by: str = "Average (The lower the better)",
|
158 |
+
ascending: bool = True,
|
159 |
+
):
|
160 |
target_data = all_data[period]
|
161 |
target_metric = metric_to_sheet[metric]
|
162 |
|
163 |
if models:
|
164 |
target_model_size = [model_size_to_file_name[model] for model in models]
|
165 |
combined_data = pd.concat([target_data[model][target_metric] for model in target_model_size], axis=0)
|
166 |
+
combined_data["Name"] = combined_data["Name"].apply(lambda x: x.replace(".pth", ""))
|
167 |
|
168 |
# Filter models based on the size range
|
169 |
+
combined_data = combined_data[combined_data["Parameters Count (B)"].between(size_range[0], size_range[1])]
|
170 |
|
171 |
combined_data.reset_index(drop=True, inplace=True)
|
172 |
|
173 |
+
if "Average (The lower the better)" in combined_data.columns:
|
174 |
+
relevant_columns = [col for col in visible_columns if col not in ["Name", "Parameters Count (B)", "Average (The lower the better)"]]
|
|
|
175 |
if len(combined_data) > 0:
|
176 |
+
combined_data["Average (The lower the better)"] = round(combined_data[relevant_columns].mean(axis=1), 3)
|
177 |
|
178 |
if len(combined_data) > 0:
|
179 |
sorted_data = combined_data.sort_values(by=sort_by, ascending=ascending)
|
180 |
+
sorted_data = sorted_data.rename(columns={"Average (The lower the better)": "Average (lower=better)"})
|
181 |
+
sorted_data = sorted_data.rename(columns={"Parameters Count (B)": "Params (B)"})
|
182 |
+
visible_columns = ["Name", "Params (B)", "Average (lower=better)"] + visible_columns
|
183 |
filtered_data = sorted_data[visible_columns]
|
184 |
|
185 |
+
filtered_data.columns = [col.replace("_", " ") for col in filtered_data.columns]
|
186 |
|
187 |
+
formatter = {col: "{:.3f}" for col in filtered_data.columns if filtered_data[col].dtype in ["float64", "float32"]}
|
|
|
188 |
|
189 |
# color gradient
|
190 |
colors = ["#63be7b", "#ffffff", "#f8696b"]
|
|
|
192 |
vmin = {}
|
193 |
vmax = {}
|
194 |
for column in filtered_data.columns:
|
195 |
+
if column in ["Name", "Params (B)"]:
|
196 |
continue
|
197 |
col_values = filtered_data[column]
|
198 |
if len(col_values) > 1:
|
|
|
201 |
vmax[column] = second_largest
|
202 |
|
203 |
target_color_columns = []
|
204 |
+
if "Average" in color_columns:
|
205 |
+
target_color_columns.append("Average (lower=better)")
|
206 |
+
if "Individual Tests" in color_columns:
|
207 |
+
target_color_columns.extend([col for col in filtered_data.columns if col not in ["Name", "Params (B)", "Average (lower=better)"]])
|
|
|
|
|
208 |
|
209 |
+
styler = filtered_data.style.format(formatter).applymap(color_cell, subset=["Params (B)"])
|
210 |
|
211 |
for column in target_color_columns:
|
212 |
if column in vmin and column in vmax: # Ensure that the vmin and vmax dicts contain the column
|
|
|
218 |
else:
|
219 |
return pd.DataFrame()
|
220 |
|
221 |
+
|
222 |
def create_world_languages_gdp_chart():
|
223 |
+
languages = ["English", "Chinese", "Spanish", "Japanese", "German", "French", "Arabic", "Italian", "Portuguese", "Korean", "Other"]
|
224 |
shares = [27, 18, 8, 6, 5, 4, 3, 2, 2, 2, 23]
|
225 |
+
colors = ["#FF7F7F", "#FFA07A", "#FFDB58", "#90EE90", "#98FB98", "#87CEFA", "#B0C4DE", "#DDA0DD", "#D8BFD8", "#F0E68C", "#E0FFFF"]
|
226 |
+
|
227 |
+
fig = go.Figure(
|
228 |
+
data=[
|
229 |
+
go.Pie(
|
230 |
+
labels=languages,
|
231 |
+
values=shares,
|
232 |
+
hole=0.3,
|
233 |
+
marker=dict(colors=colors, line=dict(color="#FFFFFF", width=2)),
|
234 |
+
textinfo="label+percent",
|
235 |
+
textposition="outside",
|
236 |
+
insidetextorientation="radial",
|
237 |
+
textfont=dict(size=12),
|
238 |
+
)
|
239 |
+
]
|
240 |
+
)
|
241 |
|
242 |
fig.update_layout(
|
243 |
title={
|
244 |
+
"text": "World Languages by Share of Global GDP",
|
245 |
+
"y": 0.95,
|
246 |
+
"x": 0.5,
|
247 |
+
"xanchor": "center",
|
248 |
+
"yanchor": "top",
|
249 |
+
"font": dict(size=20, color="black"),
|
250 |
},
|
251 |
showlegend=False,
|
252 |
width=700,
|
|
|
256 |
|
257 |
return fig
|
258 |
|
259 |
+
|
260 |
def check_model_exists(model_id):
|
261 |
api = HfApi()
|
262 |
try:
|
|
|
272 |
|
273 |
|
274 |
def submit_model(name):
|
275 |
+
if "Exists" not in check_model_exists(name):
|
276 |
return f"# ERROR: Model {name} does not exist on Hugging Face!"
|
277 |
|
278 |
try:
|
279 |
response = requests.post(webhook_url, json={"content": name})
|
280 |
if response.status_code == 200:
|
281 |
response_data = response.json()
|
282 |
+
if response_data.get("status") == "success":
|
283 |
return "# SUCCESS: We will check the model as soon as possible. Thank you for your submission!"
|
284 |
else:
|
285 |
return f"# ERROR: {response_data.get('message', 'Unknown error')}"
|
|
|
293 |
|
294 |
|
295 |
def create_scaling_plot(all_data, period):
|
296 |
+
selected_columns = ["Name", "Parameters Count (B)", "Average (The lower the better)"]
|
297 |
target_data = all_data[period]
|
298 |
new_df = pd.DataFrame()
|
299 |
|
300 |
for size in target_data.keys():
|
301 |
+
new_df = pd.concat([new_df, target_data[size]["cr"].loc[:, selected_columns]], axis=0)
|
302 |
|
303 |
+
new_df.rename(columns={"Parameters Count (B)": "Params(B)", "Average (The lower the better)": "Compression Rate (%)"}, inplace=True)
|
|
|
|
|
|
|
304 |
|
305 |
+
new_df["Log Params(B)"] = np.log(new_df["Params(B)"])
|
306 |
+
new_df["Log Compression Rate (%)"] = np.log(new_df["Compression Rate (%)"])
|
307 |
|
308 |
+
fig = px.scatter(
|
309 |
+
new_df,
|
310 |
+
x="Log Params(B)",
|
311 |
+
y="Log Compression Rate (%)",
|
312 |
+
title="Compression Rate Scaling Law",
|
313 |
+
hover_name="Name",
|
314 |
+
custom_data=["Params(B)", "Compression Rate (%)"],
|
315 |
+
)
|
316 |
|
317 |
fig.update_traces(
|
318 |
hovertemplate="<b>%{hovertext}</b><br>Params(B): %{customdata[0]:.2f} B<br>Compression Rate (%): %{customdata[1]:.2f}<extra></extra>"
|
319 |
)
|
320 |
+
|
321 |
names_to_connect_dict = {
|
322 |
+
"2024-05": ["Meta-Llama-3-8B", "stablelm-3b-4e1t", "Qwen2-1.5B", "TinyLlama-1.1B-intermediate-step-1431k-3T", "Mistral-Nemo-Base-2407"],
|
323 |
+
"2024-06": ["Meta-Llama-3-8B", "stablelm-3b-4e1t", "Qwen2-1.5B", "TinyLlama-1.1B-intermediate-step-1431k-3T", "Mistral-Nemo-Base-2407"],
|
324 |
+
"2024-07": ["Meta-Llama-3.1-8B", "stablelm-3b-4e1t", "Qwen2-1.5B", "TinyLlama-1.1B-intermediate-step-1431k-3T", "Mistral-Nemo-Base-2407"],
|
325 |
+
"2024-08": [
|
326 |
+
"Meta-Llama-3.1-8B",
|
327 |
+
"Rene-v0.1-1.3b-pytorch",
|
328 |
+
"stablelm-3b-4e1t",
|
329 |
+
"Qwen2-1.5B",
|
330 |
+
"TinyLlama-1.1B-intermediate-step-1431k-3T",
|
331 |
+
"Mistral-Nemo-Base-2407",
|
332 |
+
],
|
333 |
}
|
334 |
|
335 |
+
names_to_connect = names_to_connect_dict.get(period, names_to_connect_dict["2024-08"])
|
336 |
+
|
337 |
+
connection_points = new_df[new_df["Name"].isin(names_to_connect)]
|
338 |
|
339 |
+
new_df["Color"] = new_df["Name"].apply(lambda name: "#39C5BB" if name in names_to_connect else "#636efa")
|
340 |
|
341 |
+
fig.update_traces(marker=dict(color=new_df["Color"]))
|
342 |
|
343 |
+
X = connection_points["Log Params(B)"].values.reshape(-1, 1)
|
344 |
+
y = connection_points["Log Compression Rate (%)"].values
|
345 |
model = LinearRegression().fit(X, y)
|
346 |
|
347 |
+
x_min = connection_points["Log Params(B)"].min()
|
348 |
+
x_max = connection_points["Log Params(B)"].max()
|
349 |
extended_x = np.linspace(x_min, x_max * 1.5, 100)
|
350 |
extended_x_original = np.exp(extended_x)
|
351 |
trend_line_y = model.predict(extended_x.reshape(-1, 1))
|
|
|
354 |
trend_line = go.Scatter(
|
355 |
x=extended_x,
|
356 |
y=trend_line_y,
|
357 |
+
mode="lines",
|
358 |
+
line=dict(color="skyblue", dash="dash"),
|
359 |
+
name="Trend Line",
|
360 |
+
hovertemplate="<b>Params(B):</b> %{customdata[0]:.2f}<br>" + "<b>Compression Rate (%):</b> %{customdata[1]:.2f}<extra></extra>",
|
361 |
+
customdata=np.stack((extended_x_original, trend_line_y_original), axis=-1),
|
|
|
362 |
)
|
363 |
|
364 |
fig.add_trace(trend_line)
|
365 |
|
366 |
+
x_min = new_df["Params(B)"].min()
|
367 |
+
x_max = new_df["Params(B)"].max()
|
368 |
x_tick_vals = np.geomspace(x_min, x_max, num=5)
|
369 |
x_tick_text = [f"{val:.1f}" for val in x_tick_vals]
|
370 |
|
371 |
+
y_min = new_df["Compression Rate (%)"].min()
|
372 |
+
y_max = new_df["Compression Rate (%)"].max()
|
373 |
y_tick_vals = np.geomspace(y_min, y_max, num=5)
|
374 |
y_tick_text = [f"{val:.1f}" for val in y_tick_vals]
|
375 |
|
376 |
+
fig.update_xaxes(tickvals=np.log(x_tick_vals), ticktext=x_tick_text, title="Params(B)")
|
377 |
+
fig.update_yaxes(tickvals=np.log(y_tick_vals), ticktext=y_tick_text, title="Compression Rate (%)", autorange="reversed")
|
|
|
378 |
|
379 |
+
fig.update_layout(xaxis=dict(showgrid=True, zeroline=False), yaxis=dict(showgrid=True, zeroline=False))
|
|
|
|
|
|
|
380 |
|
381 |
fig.update_traces(marker=dict(size=12))
|
382 |
|
|
|
396 |
all_data[folder_name][file_name] = {}
|
397 |
for sheet_name in sheet_name_list:
|
398 |
final_file_name = os.path.join(folder, file_name)
|
399 |
+
all_data[folder_name][file_name][sheet_name] = rename_columns(pd.read_excel(final_file_name + ".xlsx", sheet_name=sheet_name))
|
|
|
400 |
|
401 |
return all_data, time_list
|
402 |
|
|
|
415 |
# return mutilange_data, time_list
|
416 |
|
417 |
|
418 |
+
all_data, time_list = read_all_data("data")
|
419 |
# muti_lang_data, muti_lang_time_list = read_mutilange_data()
|
420 |
|
421 |
time_list.sort()
|
|
|
426 |
initial_models = model_size_list
|
427 |
initial_metric = metric_list[0]
|
428 |
initial_columns = get_unique_column_names(all_data)
|
429 |
+
initial_columns = initial_columns[:-1]
|
430 |
+
# initial_colors = ["Average"]
|
431 |
+
initial_colors = ["Average", "Individual Tests"]
|
432 |
initial_size_range = [0, 15]
|
433 |
initial_data = update_table(initial_period, initial_models, initial_metric, initial_columns, initial_colors, initial_size_range)
|
434 |
|
435 |
+
css = """
|
436 |
.gradio-container {
|
437 |
max-width: 95% !important;
|
438 |
}
|
|
|
444 |
word-break: break-word;
|
445 |
}
|
446 |
|
447 |
+
"""
|
448 |
|
449 |
TITLE_HTML = '<h1 style="text-align:center"><span style="font-size:1.3em">π LLM Compression Leaderboard</span></h1>'
|
450 |
SUBTITLE_HTML = "<h1 style='text-align:center'><span style='font-size:0.8em'>Welcome to Uncheatable Eval LLM Compression Leaderboard, where fancy fine-tuning and cheating wonβt work π«; only compute π», data π, and real innovation π₯ can prevail!</span></h1>"
|
|
|
461 |
size_range_slider = RangeSlider(minimum=0, maximum=15, value=[0, 15], step=0.1, label="Model Size Range")
|
462 |
metric_selector = gr.Dropdown(label="Metric", choices=metric_list, value=metric_list[0])
|
463 |
with gr.Column():
|
464 |
+
color_selector = gr.CheckboxGroup(label="Colored Columns", choices=["Average", "Individual Tests"], value=["Average"])
|
465 |
+
colfilter = gr.CheckboxGroup(
|
466 |
+
label="Data Source", choices=get_unique_column_names(all_data), value=get_unique_column_names(all_data)
|
467 |
+
)
|
468 |
+
|
469 |
+
table = gr.Dataframe(
|
470 |
+
initial_data,
|
471 |
+
column_widths=[130, 50, 50, 35, 35, 35, 35, 35, 35, 35, 35],
|
472 |
+
wrap=True,
|
473 |
+
height=800,
|
474 |
+
)
|
475 |
+
|
476 |
+
period_selector.change(
|
477 |
+
update_table, inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider], outputs=table
|
478 |
+
)
|
479 |
+
model_selector.change(
|
480 |
+
update_table, inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider], outputs=table
|
481 |
+
)
|
482 |
+
metric_selector.change(
|
483 |
+
update_table, inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider], outputs=table
|
484 |
+
)
|
485 |
+
colfilter.change(
|
486 |
+
update_table, inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider], outputs=table
|
487 |
+
)
|
488 |
+
color_selector.change(
|
489 |
+
update_table, inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider], outputs=table
|
490 |
+
)
|
491 |
+
size_range_slider.change(
|
492 |
+
update_table, inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider], outputs=table
|
493 |
+
)
|
|
|
494 |
|
495 |
with gr.Tab("π MultiLang"):
|
496 |
gr.Markdown("## Coming soon...")
|
|
|
511 |
with gr.Tab("π Submit"):
|
512 |
with gr.Group():
|
513 |
with gr.Row():
|
514 |
+
model_name = gr.Textbox(max_lines=1, placeholder="Enter model name...", show_label=False, scale=4)
|
|
|
|
|
|
|
515 |
submit = gr.Button("Submit", variant="primary", scale=0)
|
516 |
+
output = gr.Markdown("# Enter a public HF repo id, then hit Submit to add it to the evaluation queue.")
|
|
|
517 |
|
518 |
submit.click(fn=submit_model, inputs=model_name, outputs=output)
|
519 |
|