Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +45 -101
tasks/text.py
CHANGED
@@ -1,29 +1,31 @@
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
-
from sklearn.naive_bayes import MultinomialNB
|
6 |
-
from sklearn.svm import SVC
|
7 |
from sklearn.metrics import accuracy_score
|
|
|
8 |
|
9 |
from .utils.evaluation import TextEvaluationRequest
|
10 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
11 |
|
12 |
-
# Define the router for text tasks
|
13 |
router = APIRouter()
|
14 |
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
20 |
async def evaluate_text(request: TextEvaluationRequest):
|
21 |
"""
|
22 |
-
Evaluate text classification
|
|
|
|
|
|
|
|
|
23 |
"""
|
|
|
24 |
username, space_url = get_space_info()
|
25 |
|
26 |
-
#
|
27 |
LABEL_MAPPING = {
|
28 |
"0_not_relevant": 0,
|
29 |
"1_not_happening": 1,
|
@@ -35,114 +37,56 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
35 |
"7_fossil_fuels_needed": 7
|
36 |
}
|
37 |
|
38 |
-
# Load and prepare dataset
|
39 |
dataset = load_dataset(request.dataset_name)
|
40 |
-
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
41 |
-
|
42 |
-
# Train-Test Split
|
43 |
-
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
44 |
-
train_texts = [x["text"] for x in train_test["train"]]
|
45 |
-
train_labels = [x["label"] for x in train_test["train"]]
|
46 |
-
test_texts = [x["text"] for x in train_test["test"]]
|
47 |
-
test_labels = [x["label"] for x in train_test["test"]]
|
48 |
-
|
49 |
-
# TF-IDF Vectorization
|
50 |
-
vectorizer = TfidfVectorizer(max_features=5000)
|
51 |
-
train_vectors = vectorizer.fit_transform(train_texts)
|
52 |
-
test_vectors = vectorizer.transform(test_texts)
|
53 |
-
|
54 |
-
# Train Naive Bayes Classifier
|
55 |
-
model = MultinomialNB()
|
56 |
-
model.fit(train_vectors, train_labels)
|
57 |
-
|
58 |
-
# Track emissions
|
59 |
-
tracker.start()
|
60 |
-
tracker.start_task("inference")
|
61 |
-
predictions = model.predict(test_vectors)
|
62 |
-
emissions_data = tracker.stop_task()
|
63 |
-
|
64 |
-
# Calculate Accuracy
|
65 |
-
accuracy = accuracy_score(test_labels, predictions)
|
66 |
-
|
67 |
-
return {
|
68 |
-
"username": username,
|
69 |
-
"space_url": space_url,
|
70 |
-
"submission_timestamp": datetime.now().isoformat(),
|
71 |
-
"model_description": DESCRIPTION_NAIVE_BAYES,
|
72 |
-
"accuracy": float(accuracy),
|
73 |
-
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
74 |
-
"emissions_gco2eq": emissions_data.emissions * 1000,
|
75 |
-
"emissions_data": clean_emissions_data(emissions_data),
|
76 |
-
"api_route": "/text",
|
77 |
-
"dataset_config": {
|
78 |
-
"dataset_name": request.dataset_name,
|
79 |
-
"test_size": request.test_size,
|
80 |
-
"test_seed": request.test_seed
|
81 |
-
}
|
82 |
-
}
|
83 |
|
84 |
-
#
|
85 |
-
@router.post("/text_svm", tags=["Text Task"], description=DESCRIPTION_SVM)
|
86 |
-
async def evaluate_text_svm(request: TextEvaluationRequest):
|
87 |
-
"""
|
88 |
-
Evaluate text classification using SVM.
|
89 |
-
"""
|
90 |
-
username, space_url = get_space_info()
|
91 |
-
|
92 |
-
# Label Mapping
|
93 |
-
LABEL_MAPPING = {
|
94 |
-
"0_not_relevant": 0,
|
95 |
-
"1_not_happening": 1,
|
96 |
-
"2_not_human": 2,
|
97 |
-
"3_not_bad": 3,
|
98 |
-
"4_solutions_harmful_unnecessary": 4,
|
99 |
-
"5_science_unreliable": 5,
|
100 |
-
"6_proponents_biased": 6,
|
101 |
-
"7_fossil_fuels_needed": 7
|
102 |
-
}
|
103 |
-
|
104 |
-
# Load and prepare dataset
|
105 |
-
dataset = load_dataset(request.dataset_name)
|
106 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
107 |
|
108 |
-
#
|
109 |
-
train_test = dataset["train"]
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
test_labels = [x["label"] for x in train_test["test"]]
|
114 |
-
|
115 |
-
# TF-IDF Vectorization
|
116 |
-
vectorizer = TfidfVectorizer(max_features=5000)
|
117 |
-
train_vectors = vectorizer.fit_transform(train_texts)
|
118 |
-
test_vectors = vectorizer.transform(test_texts)
|
119 |
-
|
120 |
-
# Train SVM Classifier
|
121 |
-
model = SVC(kernel="linear", probability=True)
|
122 |
-
model.fit(train_vectors, train_labels)
|
123 |
-
|
124 |
-
# Track emissions
|
125 |
tracker.start()
|
126 |
tracker.start_task("inference")
|
127 |
-
predictions = model.predict(test_vectors)
|
128 |
-
emissions_data = tracker.stop_task()
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
"username": username,
|
135 |
"space_url": space_url,
|
136 |
"submission_timestamp": datetime.now().isoformat(),
|
137 |
-
"model_description":
|
138 |
"accuracy": float(accuracy),
|
139 |
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
140 |
"emissions_gco2eq": emissions_data.emissions * 1000,
|
141 |
"emissions_data": clean_emissions_data(emissions_data),
|
142 |
-
"api_route":
|
143 |
"dataset_config": {
|
144 |
"dataset_name": request.dataset_name,
|
145 |
"test_size": request.test_size,
|
146 |
"test_seed": request.test_seed
|
147 |
}
|
148 |
}
|
|
|
|
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
|
|
|
|
|
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
+
import random
|
6 |
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
|
|
10 |
router = APIRouter()
|
11 |
|
12 |
+
DESCRIPTION = "Random Baseline"
|
13 |
+
ROUTE = "/text"
|
14 |
|
15 |
+
@router.post(ROUTE, tags=["Text Task"],
|
16 |
+
description=DESCRIPTION)
|
17 |
async def evaluate_text(request: TextEvaluationRequest):
|
18 |
"""
|
19 |
+
Evaluate text classification for climate disinformation detection.
|
20 |
+
|
21 |
+
Current Model: Random Baseline
|
22 |
+
- Makes random predictions from the label space (0-7)
|
23 |
+
- Used as a baseline for comparison
|
24 |
"""
|
25 |
+
# Get space info
|
26 |
username, space_url = get_space_info()
|
27 |
|
28 |
+
# Define the label mapping
|
29 |
LABEL_MAPPING = {
|
30 |
"0_not_relevant": 0,
|
31 |
"1_not_happening": 1,
|
|
|
37 |
"7_fossil_fuels_needed": 7
|
38 |
}
|
39 |
|
40 |
+
# Load and prepare the dataset
|
41 |
dataset = load_dataset(request.dataset_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Convert string labels to integers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
45 |
|
46 |
+
# Split dataset
|
47 |
+
train_test = dataset["train"]
|
48 |
+
test_dataset = dataset["test"]
|
49 |
+
|
50 |
+
# Start tracking emissions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
tracker.start()
|
52 |
tracker.start_task("inference")
|
|
|
|
|
53 |
|
54 |
+
#--------------------------------------------------------------------------------------------
|
55 |
+
# YOUR MODEL INFERENCE CODE HERE
|
56 |
+
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
57 |
+
#--------------------------------------------------------------------------------------------
|
58 |
+
|
59 |
+
# Make random predictions (placeholder for actual model inference)
|
60 |
+
true_labels = test_dataset["label"]
|
61 |
+
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
62 |
+
|
63 |
+
#--------------------------------------------------------------------------------------------
|
64 |
+
# YOUR MODEL INFERENCE STOPS HERE
|
65 |
+
#--------------------------------------------------------------------------------------------
|
66 |
+
|
67 |
+
|
68 |
+
# Stop tracking emissions
|
69 |
+
emissions_data = tracker.stop_task()
|
70 |
+
|
71 |
+
# Calculate accuracy
|
72 |
+
accuracy = accuracy_score(true_labels, predictions)
|
73 |
+
|
74 |
+
# Prepare results dictionary
|
75 |
+
results = {
|
76 |
"username": username,
|
77 |
"space_url": space_url,
|
78 |
"submission_timestamp": datetime.now().isoformat(),
|
79 |
+
"model_description": DESCRIPTION,
|
80 |
"accuracy": float(accuracy),
|
81 |
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
82 |
"emissions_gco2eq": emissions_data.emissions * 1000,
|
83 |
"emissions_data": clean_emissions_data(emissions_data),
|
84 |
+
"api_route": ROUTE,
|
85 |
"dataset_config": {
|
86 |
"dataset_name": request.dataset_name,
|
87 |
"test_size": request.test_size,
|
88 |
"test_seed": request.test_seed
|
89 |
}
|
90 |
}
|
91 |
+
|
92 |
+
return results
|