from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV from sklearn.metrics import accuracy_score from sklearn.pipeline import Pipeline from .utils.evaluation import TextEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info router = APIRouter() DESCRIPTION = "TF-IDF + Logistic Regression" ROUTE = "/text" @router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION) async def evaluate_text(request: TextEvaluationRequest): """ Evaluate text classification for climate disinformation detection using TF-IDF and Logistic Regression. """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "0_not_relevant": 0, "1_not_happening": 1, "2_not_human": 2, "3_not_bad": 3, "4_solutions_harmful_unnecessary": 4, "5_science_unreliable": 5, "6_proponents_biased": 6, "7_fossil_fuels_needed": 7 } # Load and prepare the dataset dataset = load_dataset(request.dataset_name) # Convert string labels to integers dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) # Split dataset into training and testing sets train_data = dataset["train"] test_data = dataset["test"] train_texts, train_labels = train_data["text"], train_data["label"] test_texts, test_labels = test_data["text"], test_data["label"] # Start tracking emissions tracker.start() tracker.start_task("inference") # Define the pipeline with TF-IDF and Logistic Regression pipeline = Pipeline([ ('tfidf', TfidfVectorizer(max_features=10000, ngram_range=(1, 2), stop_words="english")), ('clf', LogisticRegression(max_iter=1000, random_state=42)) ]) # Set up GridSearchCV for hyperparameter tuning param_grid = { 'tfidf__max_features': [5000, 10000, 15000], 'tfidf__ngram_range': [(1, 1), (1, 2)], 'clf__C': [0.1, 1, 10] # Regularization strength } grid_search = GridSearchCV(pipeline, param_grid, cv=3, scoring='accuracy', verbose=2) grid_search.fit(train_texts, train_labels) # Get best estimator from GridSearch best_model = grid_search.best_estimator_ # Model Inference predictions = best_model.predict(test_texts) # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(test_labels, predictions) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": len(test_data), }, "best_params": grid_search.best_params_ } return results