File size: 4,648 Bytes
6a89c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn as nn
import torch.nn.functional as F

class MattingCriterion(nn.Module):
    def __init__(self,
                 *,
                 losses,
                 ):
        super(MattingCriterion, self).__init__()
        self.losses = losses

    def loss_gradient_penalty(self, sample_map ,preds, targets):
        preds = preds['phas']
        targets = targets['phas']

        #sample_map for unknown area
        scale = sample_map.shape[0]*262144/torch.sum(sample_map)

        #gradient in x
        sobel_x_kernel = torch.tensor([[[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]]]).type(dtype=preds.type())
        delta_pred_x = F.conv2d(preds, weight=sobel_x_kernel, padding=1)
        delta_gt_x = F.conv2d(targets, weight=sobel_x_kernel, padding=1)

        #gradient in y 
        sobel_y_kernel = torch.tensor([[[[-1, -2, -1], [0, 0, 0], [1, 2, 1]]]]).type(dtype=preds.type())
        delta_pred_y = F.conv2d(preds, weight=sobel_y_kernel, padding=1)
        delta_gt_y = F.conv2d(targets, weight=sobel_y_kernel, padding=1)

        #loss
        loss = (F.l1_loss(delta_pred_x*sample_map, delta_gt_x*sample_map)* scale + \
            F.l1_loss(delta_pred_y*sample_map, delta_gt_y*sample_map)* scale + \
            0.01 * torch.mean(torch.abs(delta_pred_x*sample_map))* scale +  \
            0.01 * torch.mean(torch.abs(delta_pred_y*sample_map))* scale)

        return dict(loss_gradient_penalty=loss)

    def loss_pha_laplacian(self, preds, targets):
        assert 'phas' in preds and 'phas' in targets
        loss = laplacian_loss(preds['phas'], targets['phas'])

        return dict(loss_pha_laplacian=loss)

    def unknown_l1_loss(self, sample_map, preds, targets):
        
        scale = sample_map.shape[0]*262144/torch.sum(sample_map)
        # scale = 1

        loss = F.l1_loss(preds['phas']*sample_map, targets['phas']*sample_map)*scale
        return dict(unknown_l1_loss=loss)

    def known_l1_loss(self, sample_map, preds, targets):
        new_sample_map = torch.zeros_like(sample_map)
        new_sample_map[sample_map==0] = 1
        
        if torch.sum(new_sample_map) == 0:
            scale = 0
        else:
            scale = new_sample_map.shape[0]*262144/torch.sum(new_sample_map)
        # scale = 1

        loss = F.l1_loss(preds['phas']*new_sample_map, targets['phas']*new_sample_map)*scale
        return dict(known_l1_loss=loss)


    def forward(self, sample_map, preds, targets):
        losses = dict()
        for k in self.losses:
            if k=='unknown_l1_loss' or k=='known_l1_loss' or k=='loss_gradient_penalty':
                losses.update(getattr(self, k)(sample_map, preds, targets))
            else:
                losses.update(getattr(self, k)(preds, targets))
        return losses


#-----------------Laplacian Loss-------------------------#
def laplacian_loss(pred, true, max_levels=5):
    kernel = gauss_kernel(device=pred.device, dtype=pred.dtype)
    pred_pyramid = laplacian_pyramid(pred, kernel, max_levels)
    true_pyramid = laplacian_pyramid(true, kernel, max_levels)
    loss = 0
    for level in range(max_levels):
        loss += (2 ** level) * F.l1_loss(pred_pyramid[level], true_pyramid[level])
    return loss / max_levels

def laplacian_pyramid(img, kernel, max_levels):
    current = img
    pyramid = []
    for _ in range(max_levels):
        current = crop_to_even_size(current)
        down = downsample(current, kernel)
        up = upsample(down, kernel)
        diff = current - up
        pyramid.append(diff)
        current = down
    return pyramid

def gauss_kernel(device='cpu', dtype=torch.float32):
    kernel = torch.tensor([[1,  4,  6,  4, 1],
                        [4, 16, 24, 16, 4],
                        [6, 24, 36, 24, 6],
                        [4, 16, 24, 16, 4],
                        [1,  4,  6,  4, 1]], device=device, dtype=dtype)
    kernel /= 256
    kernel = kernel[None, None, :, :]
    return kernel

def gauss_convolution(img, kernel):
    B, C, H, W = img.shape
    img = img.reshape(B * C, 1, H, W)
    img = F.pad(img, (2, 2, 2, 2), mode='reflect')
    img = F.conv2d(img, kernel)
    img = img.reshape(B, C, H, W)
    return img

def downsample(img, kernel):
    img = gauss_convolution(img, kernel)
    img = img[:, :, ::2, ::2]
    return img

def upsample(img, kernel):
    B, C, H, W = img.shape
    out = torch.zeros((B, C, H * 2, W * 2), device=img.device, dtype=img.dtype)
    out[:, :, ::2, ::2] = img * 4
    out = gauss_convolution(out, kernel)
    return out

def crop_to_even_size(img):
    H, W = img.shape[2:]
    H = H - H % 2
    W = W - W % 2
    return img[:, :, :H, :W]