File size: 3,876 Bytes
6a89c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
from torch import nn
from torch.nn import functional as F

class Basic_Conv3x3(nn.Module):
    """
    Basic convolution layers including: Conv3x3, BatchNorm2d, ReLU layers.
    """
    def __init__(
        self,
        in_chans,
        out_chans,
        stride=2,
        padding=1,
    ):
        super().__init__()
        self.conv = nn.Conv2d(in_chans, out_chans, 3, stride, padding, bias=False)
        self.bn = nn.BatchNorm2d(out_chans)
        self.relu = nn.ReLU(True)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)

        return x

class ConvStream(nn.Module):
    """
    Simple ConvStream containing a series of basic conv3x3 layers to extract detail features.
    """
    def __init__(
        self,
        in_chans = 4,
        out_chans = [48, 96, 192],
    ):
        super().__init__()
        self.convs = nn.ModuleList()
        
        self.conv_chans = out_chans
        self.conv_chans.insert(0, in_chans)
        
        for i in range(len(self.conv_chans)-1):
            in_chan_ = self.conv_chans[i]
            out_chan_ = self.conv_chans[i+1]
            self.convs.append(
                Basic_Conv3x3(in_chan_, out_chan_)
            )
    
    def forward(self, x):
        out_dict = {'D0': x}
        for i in range(len(self.convs)):
            x = self.convs[i](x)
            name_ = 'D'+str(i+1)
            out_dict[name_] = x
        
        return out_dict

class Fusion_Block(nn.Module):
    """
    Simple fusion block to fuse feature from ConvStream and Plain Vision Transformer.
    """
    def __init__(
        self,
        in_chans,
        out_chans,
    ):
        super().__init__()
        self.conv = Basic_Conv3x3(in_chans, out_chans, stride=1, padding=1)

    def forward(self, x, D):
        F_up = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
        out = torch.cat([D, F_up], dim=1)
        out = self.conv(out)

        return out    

class Matting_Head(nn.Module):
    """
    Simple Matting Head, containing only conv3x3 and conv1x1 layers.
    """
    def __init__(
        self,
        in_chans = 32,
        mid_chans = 16,
    ):
        super().__init__()
        self.matting_convs = nn.Sequential(
            nn.Conv2d(in_chans, mid_chans, 3, 1, 1),
            nn.BatchNorm2d(mid_chans),
            nn.ReLU(True),
            nn.Conv2d(mid_chans, 1, 1, 1, 0)
            )

    def forward(self, x):
        x = self.matting_convs(x)

        return x

class Detail_Capture(nn.Module):
    """
    Simple and Lightweight Detail Capture Module for ViT Matting.
    """
    def __init__(
        self,
        in_chans = 384,
        img_chans=4,
        convstream_out = [48, 96, 192],
        fusion_out = [256, 128, 64, 32],
    ):
        super().__init__()
        assert len(fusion_out) == len(convstream_out) + 1

        self.convstream = ConvStream(in_chans = img_chans)
        self.conv_chans = self.convstream.conv_chans

        self.fusion_blks = nn.ModuleList()
        self.fus_channs = fusion_out
        self.fus_channs.insert(0, in_chans)
        for i in range(len(self.fus_channs)-1):
            self.fusion_blks.append(
                Fusion_Block(
                    in_chans = self.fus_channs[i] + self.conv_chans[-(i+1)],
                    out_chans = self.fus_channs[i+1],
                )
            )

        self.matting_head = Matting_Head(
            in_chans = fusion_out[-1],
        )

    def forward(self, features, images):
        detail_features = self.convstream(images)
        for i in range(len(self.fusion_blks)):
            d_name_ = 'D'+str(len(self.fusion_blks)-i-1)
            features = self.fusion_blks[i](features, detail_features[d_name_])
        
        phas = torch.sigmoid(self.matting_head(features))

        return {'phas': phas}