WritingHelper / GradioApp.py
JenkinsGage's picture
Init
6de7903
raw
history blame
1.5 kB
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained('humarin/chatgpt_paraphraser_on_T5_base', cache_dir='./Models')
model = AutoModelForSeq2SeqLM.from_pretrained('humarin/chatgpt_paraphraser_on_T5_base', cache_dir='./Models')
torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
def paraphrase(model, text, max_length=128, num_return_sequences=5, num_beams=25, temperature=0.7):
input_ids = tokenizer(
f'paraphrase: {text}',
return_tensors="pt", padding="longest",
max_length=max_length,
truncation=True,
).input_ids
outputs = model.generate(
input_ids, temperature=temperature, repetition_penalty=1.5,
num_return_sequences=num_return_sequences, no_repeat_ngram_size=5, num_beams=num_beams, max_length=max_length
)
res = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return res
def fn(text, results_num=5, beams_num=25, temperature=0.7):
return '\n'.join(paraphrase(model, text, num_return_sequences=results_num, num_beams=beams_num, temperature=temperature))
demo = gr.Interface(
fn=fn,
inputs=[gr.Textbox(lines=3, placeholder='Enter Text To Paraphrase'), gr.Slider(minimum=1, maximum=10, step=1, value=5), gr.Slider(minimum=1, maximum=50, step=1, value=25), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.7)],
outputs=['text'],
)
demo.launch(share=True)