Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
tokenizer = AutoTokenizer.from_pretrained('humarin/chatgpt_paraphraser_on_T5_base', cache_dir='./Models') | |
model = AutoModelForSeq2SeqLM.from_pretrained('humarin/chatgpt_paraphraser_on_T5_base', cache_dir='./Models') | |
torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8, inplace=True) | |
def paraphrase(model, text, max_length=128, num_return_sequences=5, num_beams=25, temperature=0.7): | |
input_ids = tokenizer( | |
f'paraphrase: {text}', | |
return_tensors="pt", padding="longest", | |
max_length=max_length, | |
truncation=True, | |
).input_ids | |
outputs = model.generate( | |
input_ids, temperature=temperature, repetition_penalty=1.5, | |
num_return_sequences=num_return_sequences, no_repeat_ngram_size=5, num_beams=num_beams, max_length=max_length | |
) | |
res = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
return res | |
def fn(text, results_num=5, beams_num=25, temperature=0.7): | |
return '\n'.join(paraphrase(model, text, num_return_sequences=results_num, num_beams=beams_num, temperature=temperature)) | |
demo = gr.Interface( | |
fn=fn, | |
inputs=[gr.Textbox(lines=3, placeholder='Enter Text To Paraphrase'), gr.Slider(minimum=1, maximum=10, step=1, value=5), gr.Slider(minimum=1, maximum=50, step=1, value=25), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.7)], | |
outputs=['text'], | |
) | |
demo.launch(share=True) |