WritingHelper / app.py
JenkinsGage's picture
Update app.py
a05576a
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained('humarin/chatgpt_paraphraser_on_T5_base')
model = AutoModelForSeq2SeqLM.from_pretrained('humarin/chatgpt_paraphraser_on_T5_base')
def paraphrase(
text,
num_beams=5,
num_beam_groups=5,
num_return_sequences=5,
repetition_penalty=10.0,
diversity_penalty=3.0,
no_repeat_ngram_size=2,
temperature=0.7,
max_length=128
):
input_ids = tokenizer(
f'paraphrase: {text}',
return_tensors="pt", padding="longest",
max_length=max_length,
truncation=True,
).input_ids
outputs = model.generate(
input_ids, temperature=temperature, repetition_penalty=repetition_penalty,
num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size,
num_beams=num_beams, num_beam_groups=num_beam_groups,
max_length=max_length, diversity_penalty=diversity_penalty
)
res = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return res
def fn(
text,
num_beams=5,
num_beam_groups=5,
num_return_sequences=5,
repetition_penalty=10.0,
diversity_penalty=3.0,
no_repeat_ngram_size=2,
temperature=0.7,
max_length=128
):
res = paraphrase(text, num_beams, num_beam_groups, num_return_sequences, repetition_penalty, diversity_penalty, no_repeat_ngram_size, temperature, max_length)
result = ''
for i, item in enumerate(res):
result += f'{i+1}. {item}\n'
return result
demo = gr.Interface(
fn=fn,
inputs=[
gr.Textbox(lines=3, placeholder='Enter Text To Paraphrase'),
gr.Slider(minimum=1, maximum=10, step=1, value=5, label='Num Beams', info='This parameter controls the number of possible next tokens that are considered at each step in the beam search algorithm. A higher value will result in more diverse paraphrases, but may also take longer to generate.'),
gr.Slider(minimum=1, maximum=10, step=1, value=5, label='Num Beam Groups', info='This parameter controls the number of beams that are run in parallel. A higher value will result in faster generation, but may also result in less diversity.'),
gr.Slider(minimum=1, maximum=10, step=1, value=5, label='Num Return Sequences', info='This parameter controls the number of sequences that are generated at each step in the beam search algorithm. A higher value will produce more results, but may also take longer to generate.'),
gr.Slider(minimum=0.6, maximum=20.1, step=0.5, value=10.1, label='Repetition Penalty', info='This parameter controls how much the model penalizes itself for generating repeated words or phrases. A higher value will result in more unique paraphrases, but may also result in less accurate paraphrases.'),
gr.Slider(minimum=0.6, maximum=20.1, step=0.5, value=3.1, label='Diversity Penalty', info='This parameter controls how much the model penalizes itself for generating paraphrases that are similar to each other. A higher value will result in more diverse paraphrases, but may also result in less accurate paraphrases.'),
gr.Slider(minimum=1, maximum=10, step=1, value=2, label='No Repeat Ngram Size', info='This parameter controls the size of the n-grams that the model is not allowed to repeat. A higher value will result in more unique paraphrases, but may also result in less accurate paraphrases.'),
gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.7, label='Temperature', info='This parameter controls how much the model is allowed to deviate from the original text. A higher value will result in more creative paraphrases, but may also result in less accurate paraphrases.'),
gr.Slider(minimum=32, maximum=512, step=1, value=128, label='Max Length', info='This parameter controls the maximum length of the generated paraphrase. A higher value will result in more detailed paraphrases, but may also take longer to generate.'),
],
outputs=['text'],
)
demo.launch()