Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
tokenizer = AutoTokenizer.from_pretrained('humarin/chatgpt_paraphraser_on_T5_base') | |
model = AutoModelForSeq2SeqLM.from_pretrained('humarin/chatgpt_paraphraser_on_T5_base') | |
def paraphrase( | |
text, | |
num_beams=5, | |
num_beam_groups=5, | |
num_return_sequences=5, | |
repetition_penalty=10.0, | |
diversity_penalty=3.0, | |
no_repeat_ngram_size=2, | |
temperature=0.7, | |
max_length=128 | |
): | |
input_ids = tokenizer( | |
f'paraphrase: {text}', | |
return_tensors="pt", padding="longest", | |
max_length=max_length, | |
truncation=True, | |
).input_ids | |
outputs = model.generate( | |
input_ids, temperature=temperature, repetition_penalty=repetition_penalty, | |
num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size, | |
num_beams=num_beams, num_beam_groups=num_beam_groups, | |
max_length=max_length, diversity_penalty=diversity_penalty | |
) | |
res = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
return res | |
def fn( | |
text, | |
num_beams=5, | |
num_beam_groups=5, | |
num_return_sequences=5, | |
repetition_penalty=10.0, | |
diversity_penalty=3.0, | |
no_repeat_ngram_size=2, | |
temperature=0.7, | |
max_length=128 | |
): | |
res = paraphrase(text, num_beams, num_beam_groups, num_return_sequences, repetition_penalty, diversity_penalty, no_repeat_ngram_size, temperature, max_length) | |
result = '' | |
for i, item in enumerate(res): | |
result += f'{i+1}. {item}\n' | |
return result | |
demo = gr.Interface( | |
fn=fn, | |
inputs=[ | |
gr.Textbox(lines=3, placeholder='Enter Text To Paraphrase'), | |
gr.Slider(minimum=1, maximum=10, step=1, value=5, label='Num Beams', info='This parameter controls the number of possible next tokens that are considered at each step in the beam search algorithm. A higher value will result in more diverse paraphrases, but may also take longer to generate.'), | |
gr.Slider(minimum=1, maximum=10, step=1, value=5, label='Num Beam Groups', info='This parameter controls the number of beams that are run in parallel. A higher value will result in faster generation, but may also result in less diversity.'), | |
gr.Slider(minimum=1, maximum=10, step=1, value=5, label='Num Return Sequences', info='This parameter controls the number of sequences that are generated at each step in the beam search algorithm. A higher value will produce more results, but may also take longer to generate.'), | |
gr.Slider(minimum=0.6, maximum=20.1, step=0.5, value=10.1, label='Repetition Penalty', info='This parameter controls how much the model penalizes itself for generating repeated words or phrases. A higher value will result in more unique paraphrases, but may also result in less accurate paraphrases.'), | |
gr.Slider(minimum=0.6, maximum=20.1, step=0.5, value=3.1, label='Diversity Penalty', info='This parameter controls how much the model penalizes itself for generating paraphrases that are similar to each other. A higher value will result in more diverse paraphrases, but may also result in less accurate paraphrases.'), | |
gr.Slider(minimum=1, maximum=10, step=1, value=2, label='No Repeat Ngram Size', info='This parameter controls the size of the n-grams that the model is not allowed to repeat. A higher value will result in more unique paraphrases, but may also result in less accurate paraphrases.'), | |
gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.7, label='Temperature', info='This parameter controls how much the model is allowed to deviate from the original text. A higher value will result in more creative paraphrases, but may also result in less accurate paraphrases.'), | |
gr.Slider(minimum=32, maximum=512, step=1, value=128, label='Max Length', info='This parameter controls the maximum length of the generated paraphrase. A higher value will result in more detailed paraphrases, but may also take longer to generate.'), | |
], | |
outputs=['text'], | |
) | |
demo.launch() |