|
import gradio as gr |
|
import transformers |
|
import torch |
|
from peft import PeftModel |
|
import os |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
|
|
model_id = "JerniganLab/interviews-and-qa" |
|
base_model = "meta-llama/Meta-Llama-3-8B-Instruct" |
|
|
|
llama_model = transformers.AutoModelForCausalLM.from_pretrained(base_model) |
|
|
|
|
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=llama_model, |
|
tokenizer=base_model, |
|
model_kwargs={"torch_dtype": torch.bfloat16}, |
|
device="cuda", |
|
) |
|
|
|
pipeline.model = PeftModel.from_pretrained(llama_model, model_id) |
|
|
|
def chat_function(message, history, system_prompt, max_new_tokens, temperature): |
|
messages = [{"role":"system","content":system_prompt}, |
|
{"role":"user", "content":message}] |
|
prompt = pipeline.tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True,) |
|
terminators = [ |
|
pipeline.tokenizer.eos_token_id, |
|
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")] |
|
outputs = pipeline( |
|
prompt, |
|
max_new_tokens = max_new_tokens, |
|
eos_token_id = terminators, |
|
do_sample = True, |
|
temperature = temperature + 0.1, |
|
top_p = 0.9,) |
|
return outputs[0]["generated_text"][len(prompt):] |
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
chat_function, |
|
textbox=gr.Textbox(placeholder="Enter message here", container=False, scale = 7), |
|
chatbot=gr.Chatbot(height=400), |
|
additional_inputs=[ |
|
gr.Textbox("You are helpful AI", label="System Prompt"), |
|
gr.Slider(500,4000, label="Max New Tokens"), |
|
gr.Slider(0,1, label="Temperature") |
|
] |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|