import gradio as gr import transformers import torch from peft import PeftModel model_id = "JerniganLab/interviews-and-qa" pipeline = transformers.pipeline( "text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct", model_kwargs={"torch_dtype": torch.bfloat16}, device="cuda", ) pipeline.model = PeftModel.from_pretrained(model=base_model, model_id) def chat_function(message, history, system_prompt, max_new_tokens, temperature): messages = [{"role":"system","content":system_prompt}, {"role":"user", "content":message}] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True,) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")] outputs = pipeline( prompt, max_new_tokens = max_new_tokens, eos_token_id = terminators, do_sample = True, temperature = temperature + 0.1, top_p = 0.9,) return outputs[0]["generated_text"][len(prompt):] """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()