tolulope commited on
Commit
b0485d6
·
verified ·
1 Parent(s): e6f2295

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -45
app.py CHANGED
@@ -1,63 +1,59 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
 
 
 
31
  messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
 
 
 
42
 
43
  """
44
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
  """
46
  demo = gr.ChatInterface(
47
- respond,
 
 
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
62
 
63
  if __name__ == "__main__":
 
1
  import gradio as gr
2
+ import transformers
3
+ import torch
4
+ from peft import PeftModel
5
+ import os
6
 
7
+ HF_TOKEN = os.environ.get("HF_TOKEN")
 
 
 
8
 
9
+ model_id = "JerniganLab/qa-only"
10
+ base_model = "meta-llama/Meta-Llama-3-8B-Instruct"
11
 
12
+ llama_model = transformers.AutoModelForCausalLM.from_pretrained(base_model)
 
 
 
 
 
 
 
 
13
 
 
 
 
 
 
14
 
15
+ pipeline = transformers.pipeline(
16
+ "text-generation",
17
+ model=llama_model,
18
+ tokenizer=base_model,
19
+ model_kwargs={"torch_dtype": torch.bfloat16},
20
+ device="cuda",
21
+ )
22
 
23
+ pipeline.model = PeftModel.from_pretrained(llama_model, model_id)
24
 
25
+ def chat_function(message, history, system_prompt, max_new_tokens, temperature):
26
+ messages = [{"role":"system","content":system_prompt},
27
+ {"role":"user", "content":message}]
28
+ prompt = pipeline.tokenizer.apply_chat_template(
29
  messages,
30
+ tokenize=False,
31
+ add_generation_prompt=True,)
32
+ terminators = [
33
+ pipeline.tokenizer.eos_token_id,
34
+ pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")]
35
+ outputs = pipeline(
36
+ prompt,
37
+ max_new_tokens = max_new_tokens,
38
+ eos_token_id = terminators,
39
+ do_sample = True,
40
+ temperature = temperature + 0.1,
41
+ top_p = 0.9,)
42
+ return outputs[0]["generated_text"][len(prompt):]
43
 
44
  """
45
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
46
  """
47
  demo = gr.ChatInterface(
48
+ chat_function,
49
+ textbox=gr.Textbox(placeholder="Enter message here", container=False, scale = 7),
50
+ chatbot=gr.Chatbot(height=400),
51
  additional_inputs=[
52
+ gr.Textbox("You are helpful AI", label="System Prompt"),
53
+ gr.Slider(500,4000, label="Max New Tokens"),
54
+ gr.Slider(0,1, label="Temperature")
55
+ ]
56
+ )
 
 
 
 
 
 
 
57
 
58
 
59
  if __name__ == "__main__":