import gradio as gr import transformers import torch from peft import PeftModel import os HF_TOKEN = os.environ.get("HF_TOKEN") model_id = "JerniganLab/qa-only" base_model = "meta-llama/Meta-Llama-3-8B-Instruct" llama_model = transformers.AutoModelForCausalLM.from_pretrained(base_model) pipeline = transformers.pipeline( "text-generation", model=llama_model, tokenizer=base_model, model_kwargs={"torch_dtype": torch.bfloat16}, device="cuda", ) pipeline.model = PeftModel.from_pretrained(llama_model, model_id) def chat_function(message, history, system_prompt, max_new_tokens, temperature): messages = [{"role":"system","content":system_prompt}, {"role":"user", "content":message}] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True,) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")] outputs = pipeline( prompt, max_new_tokens = max_new_tokens, eos_token_id = terminators, do_sample = True, temperature = temperature + 0.1, top_p = 0.9,) return outputs[0]["generated_text"][len(prompt):] """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( chat_function, textbox=gr.Textbox(placeholder="Enter message here", container=False, scale = 7), chatbot=gr.Chatbot(height=400), additional_inputs=[ gr.Textbox("You are helpful AI", label="System Prompt"), gr.Slider(500,4000, label="Max New Tokens"), gr.Slider(0,1, label="Temperature") ] ) if __name__ == "__main__": demo.launch()