Spaces:
Runtime error
Runtime error
JerryLiJinyi
commited on
Upload 4 files
Browse files- app.py +42 -0
- compressor.py +65 -0
- llmlingua_compressor_pro.py +1152 -0
- longlingua_compressor.py +1150 -0
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from compressor import PromptCompressor
|
3 |
+
|
4 |
+
|
5 |
+
def compressit(original_text, compressor1, ratio, maxlength):
|
6 |
+
|
7 |
+
if compressor1=="Selective Context":
|
8 |
+
compressor = PromptCompressor(type='SCCompressor', lang='en', model='gpt2', device='cuda')
|
9 |
+
elif compressor1=="LLMLingua":
|
10 |
+
return "Sorry, currently we cannot provide services for LLMLingua due to the Huggingface Token issue. Please try other compressors."
|
11 |
+
elif compressor1=="LongLLMLingua":
|
12 |
+
return "Sorry, currently we cannot provide services for LongLLMLingua due to the Huggingface Token issue. Please try other compressors."
|
13 |
+
elif compressor1=="SCRL":
|
14 |
+
compressor = PromptCompressor(type='SCRLCompressor', model_dir="models/gigaword-L8/", device="cuda", tokenizer_dir="sentence-transformers/paraphrase-distilroberta-base-v2")
|
15 |
+
elif compressor1=="KiS":
|
16 |
+
compressor = PromptCompressor(type='KiSCompressor', device="cuda", model_dir="philippelaban/keep_it_simple")
|
17 |
+
else:
|
18 |
+
compressor = PromptCompressor(type='SCCompressor', lang='en', model='gpt2', device='cuda')
|
19 |
+
|
20 |
+
if compressor1 != "SCRL":
|
21 |
+
compressed_prompt = compressor.compressgo(original_prompt=original_text, ratio=float(ratio), max_length=int(maxlength))
|
22 |
+
else:
|
23 |
+
compressed_prompt = compressor.compressgo(original_prompt=original_text, ratio=float(ratio), max_length=int(maxlength))
|
24 |
+
return compressed_prompt["compressed_prompt"]
|
25 |
+
|
26 |
+
|
27 |
+
demo = gr.Interface(
|
28 |
+
fn=compressit,
|
29 |
+
inputs=[
|
30 |
+
gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="input", info="Enter the original prompt here."),
|
31 |
+
gr.Dropdown(
|
32 |
+
["Selective Context", "LLMLingua", "LongLLMLingua", "SCRL", "KiS"], label="compressor", info="Choose your compressor here. \n Currently, we cannot support the online demo for LLMLingua and LongLLMLingua due to the Huggingface Token issue."
|
33 |
+
),
|
34 |
+
gr.Textbox(lines=1, placeholder="Enter the compression ratio here...", info="Ratio only works for Selective Context, LLMLingua and LongLLMLingua."),
|
35 |
+
gr.Textbox(lines=1, placeholder="Enter the max_length parameter if you are using SCRL or KiS", label="max_length", info="If you are using SCRL or KiS, fill in the parameter, if not, just ignore this.\n Hint: For SCRL, max_length should be shorter than the lenght of original prompt; For KiS, max_length should be longer than it.")
|
36 |
+
],
|
37 |
+
outputs=[
|
38 |
+
gr.Textbox(lines=1, info="Please note that when the text is very short, LLMLingua and LongLLMLingua will not work.")
|
39 |
+
]
|
40 |
+
)
|
41 |
+
|
42 |
+
demo.launch(share=False)
|
compressor.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from selective_context_compressor import SCCompressor
|
2 |
+
from kis import KiSCompressor
|
3 |
+
from scrl_compressor import SCRLCompressor
|
4 |
+
from llmlingua_compressor_pro import LLMLinguaCompressor
|
5 |
+
from typing import List
|
6 |
+
|
7 |
+
|
8 |
+
class PromptCompressor:
|
9 |
+
def __init__(self, type: str = 'SCCompressor', lang: str = 'en', model='gpt2', device='cuda', model_dir: str = '',
|
10 |
+
use_auth_token: bool = False, open_api_config: dict = {}, token: str = '',
|
11 |
+
tokenizer_dir: str = "sentence-transformers/paraphrase-distilroberta-base-v2"):
|
12 |
+
self.type = type
|
13 |
+
if self.type == 'SCCompressor':
|
14 |
+
self.compressor = SCCompressor(lang=lang, model=model, device=device)
|
15 |
+
elif self.type == 'KiSCompressor':
|
16 |
+
self.compressor = KiSCompressor(DEVICE=device, model_dir=model_dir)
|
17 |
+
elif self.type == 'LLMLinguaCompressor':
|
18 |
+
self.compressor = LLMLinguaCompressor(device_map=device, model_name=model_dir, use_auth_token=use_auth_token, open_api_config=open_api_config, token=token)
|
19 |
+
elif self.type == 'LongLLMLinguaCompressor':
|
20 |
+
self.compressor = LLMLinguaCompressor(device_map=device, model_name=model_dir, use_auth_token=use_auth_token, open_api_config=open_api_config, token=token)
|
21 |
+
elif self.type == 'SCRLCompressor':
|
22 |
+
if model_dir:
|
23 |
+
self.compressor = SCRLCompressor(model_dir=model_dir, device=device, tokenizer_dir=tokenizer_dir)
|
24 |
+
else:
|
25 |
+
print("model_dir parameter is required")
|
26 |
+
|
27 |
+
def compressgo(self, original_prompt: str = '', ratio: float = 0.5, level: str = 'phrase',
|
28 |
+
max_length: int = 256, num_beams: int = 4, do_sample: bool = True, num_return_sequences: int = 1,
|
29 |
+
target_index: int = 0, instruction: str = "", question: str = "", target_token: float = -1,
|
30 |
+
iterative_size: int = 200, force_context_ids: List[int] = None, force_context_number: int = None,
|
31 |
+
use_sentence_level_filter: bool = False, use_context_level_filter: bool = True,
|
32 |
+
use_token_level_filter: bool = True, keep_split: bool = False, keep_first_sentence: int = 0,
|
33 |
+
keep_last_sentence: int = 0, keep_sentence_number: int = 0, high_priority_bonus: int = 100,
|
34 |
+
context_budget: str = "+100", token_budget_ratio: float = 1.4, condition_in_question: str = "none",
|
35 |
+
reorder_context: str = "original", dynamic_context_compression_ratio: float = 0.0,
|
36 |
+
condition_compare: bool = False, add_instruction: bool = False, rank_method: str = "llmlingua",
|
37 |
+
concate_question: bool = True,):
|
38 |
+
if self.type == 'SCCompressor':
|
39 |
+
return self.compressor.compress(original_prompt=original_prompt, ratio=ratio, level=level)
|
40 |
+
elif self.type == 'KiSCompressor':
|
41 |
+
return self.compressor.compress(original_prompt=original_prompt, ratio=ratio, max_length=max_length, num_beams=num_beams, do_sample=do_sample, num_return_sequences=num_return_sequences, target_index=target_index)
|
42 |
+
elif self.type == 'SCRLCompressor':
|
43 |
+
return self.compressor.compress(original_prompt=original_prompt, ratio=ratio, max_length=max_length)
|
44 |
+
elif self.type == 'LLMLinguaCompressor':
|
45 |
+
return self.compressor.compress(context=original_prompt, ratio=ratio, instruction=instruction, question=question, target_token=target_token,
|
46 |
+
iterative_size=iterative_size, force_context_ids=force_context_ids, force_context_number=force_context_number,
|
47 |
+
use_token_level_filter=use_token_level_filter, use_context_level_filter=use_context_level_filter,
|
48 |
+
use_sentence_level_filter=use_sentence_level_filter, keep_split=keep_split, keep_first_sentence=keep_first_sentence,
|
49 |
+
keep_last_sentence=keep_last_sentence, keep_sentence_number=keep_sentence_number, high_priority_bonus=high_priority_bonus,
|
50 |
+
context_budget=context_budget, token_budget_ratio=token_budget_ratio, condition_in_question=condition_in_question,
|
51 |
+
reorder_context = reorder_context, dynamic_context_compression_ratio=dynamic_context_compression_ratio, condition_compare=condition_compare,
|
52 |
+
add_instruction=add_instruction, rank_method=rank_method, concate_question=concate_question)
|
53 |
+
elif self.type == 'LongLLMLinguaCompressor':
|
54 |
+
return self.compressor.compress(context=original_prompt, ratio=ratio, instruction=instruction, question=question, target_token=target_token,
|
55 |
+
iterative_size=iterative_size, force_context_ids=force_context_ids, force_context_number=force_context_number,
|
56 |
+
use_token_level_filter=use_token_level_filter, use_context_level_filter=use_context_level_filter,
|
57 |
+
use_sentence_level_filter=use_sentence_level_filter, keep_split=keep_split, keep_first_sentence=keep_first_sentence,
|
58 |
+
keep_last_sentence=keep_last_sentence, keep_sentence_number=keep_sentence_number, high_priority_bonus=high_priority_bonus,
|
59 |
+
context_budget=context_budget, token_budget_ratio=token_budget_ratio, condition_in_question=condition_in_question,
|
60 |
+
reorder_context = reorder_context, dynamic_context_compression_ratio=dynamic_context_compression_ratio, condition_compare=condition_compare,
|
61 |
+
add_instruction=add_instruction, rank_method=rank_method, concate_question=concate_question)
|
62 |
+
else:
|
63 |
+
return self.compressor.compress(original_prompt=original_prompt, ratio=ratio)
|
64 |
+
|
65 |
+
|
llmlingua_compressor_pro.py
ADDED
@@ -0,0 +1,1152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llmlingua import PromptCompressor
|
2 |
+
import bisect
|
3 |
+
from collections import defaultdict
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
import nltk
|
10 |
+
import tiktoken
|
11 |
+
import re
|
12 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
13 |
+
from abs_compressor import AbstractCompressor
|
14 |
+
|
15 |
+
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
|
16 |
+
|
17 |
+
class LLMLinguaCompressor(AbstractCompressor):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
model_name: str = "meta-llama/Llama-2-7b-chat-hf",
|
21 |
+
device_map: str = "cuda",
|
22 |
+
use_auth_token: bool = False,
|
23 |
+
open_api_config: dict = {},
|
24 |
+
token: str = ''
|
25 |
+
):
|
26 |
+
self.model_name = model_name
|
27 |
+
self.token = token
|
28 |
+
self.load_model(model_name, device_map, use_auth_token)
|
29 |
+
self.retrieval_model = None
|
30 |
+
self.retrieval_model_name = None
|
31 |
+
self.open_api_config = open_api_config
|
32 |
+
self.cache_bos_num = 10
|
33 |
+
|
34 |
+
def load_model(
|
35 |
+
self, model_name: str, device_map: str = "cuda", use_auth_token: bool = False
|
36 |
+
):
|
37 |
+
config = AutoConfig.from_pretrained(self.model_name)
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
39 |
+
tokenizer.padding_side = "left"
|
40 |
+
tokenizer.pad_token_id = (
|
41 |
+
config.pad_token_id if config.pad_token_id else tokenizer.eos_token_id
|
42 |
+
)
|
43 |
+
self.device = (
|
44 |
+
device_map if any(key in device_map for key in ["cuda", "cpu"]) else "cuda"
|
45 |
+
)
|
46 |
+
if "cuda" in device_map or "cpu" in device_map:
|
47 |
+
model = AutoModelForCausalLM.from_pretrained(
|
48 |
+
model_name,
|
49 |
+
torch_dtype="auto" if device_map == "cuda" else torch.float32,
|
50 |
+
config=config,
|
51 |
+
ignore_mismatched_sizes=True,
|
52 |
+
trust_remote_code=True,
|
53 |
+
token=self.token
|
54 |
+
).to(device_map)
|
55 |
+
else:
|
56 |
+
model = AutoModelForCausalLM.from_pretrained(
|
57 |
+
model_name,
|
58 |
+
device_map=device_map,
|
59 |
+
torch_dtype="auto",
|
60 |
+
pad_token_id=tokenizer.pad_token_id,
|
61 |
+
offload_folder="/tmp/offload",
|
62 |
+
offload_state_dict=True,
|
63 |
+
cache_dir="/tmp/cache",
|
64 |
+
use_auth_token=use_auth_token,
|
65 |
+
trust_remote_code=True,
|
66 |
+
token=self.token
|
67 |
+
)
|
68 |
+
self.tokenizer = tokenizer
|
69 |
+
self.model = model
|
70 |
+
self.context_idxs = []
|
71 |
+
self.max_position_embeddings = config.max_position_embeddings
|
72 |
+
|
73 |
+
def get_ppl(
|
74 |
+
self,
|
75 |
+
text: str,
|
76 |
+
granularity: str = "sentence",
|
77 |
+
input_ids=None,
|
78 |
+
attention_mask=None,
|
79 |
+
past_key_values=None,
|
80 |
+
return_kv=False,
|
81 |
+
end=None,
|
82 |
+
condition_mode: str = "none",
|
83 |
+
condition_pos_id: int = 0,
|
84 |
+
):
|
85 |
+
if input_ids is None:
|
86 |
+
tokenized_text = self.tokenizer(text, return_tensors="pt")
|
87 |
+
input_ids = tokenized_text["input_ids"].to(self.device)
|
88 |
+
attention_mask = tokenized_text["attention_mask"].to(self.device)
|
89 |
+
if past_key_values is not None:
|
90 |
+
past_length = past_key_values[0][0].shape[2]
|
91 |
+
else:
|
92 |
+
past_length = 0
|
93 |
+
if end is None:
|
94 |
+
end = input_ids.shape[1]
|
95 |
+
end = min(end, past_length + self.max_position_embeddings)
|
96 |
+
with torch.no_grad():
|
97 |
+
response = self.model(
|
98 |
+
input_ids[:, past_length:end],
|
99 |
+
attention_mask=attention_mask[:, :end],
|
100 |
+
past_key_values=past_key_values,
|
101 |
+
use_cache=True,
|
102 |
+
)
|
103 |
+
past_key_values = response.past_key_values
|
104 |
+
|
105 |
+
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
|
106 |
+
shift_logits = response.logits[..., :-1, :].contiguous()
|
107 |
+
shift_labels = input_ids[..., past_length + 1 : end].contiguous()
|
108 |
+
# Flatten the tokens
|
109 |
+
active = (attention_mask[:, past_length:end] == 1)[..., :-1].view(-1)
|
110 |
+
active_logits = shift_logits.view(-1, shift_logits.size(-1))[active]
|
111 |
+
active_labels = shift_labels.view(-1)[active]
|
112 |
+
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
|
113 |
+
loss = loss_fct(active_logits, active_labels)
|
114 |
+
if condition_mode == "before":
|
115 |
+
loss = loss[:condition_pos_id]
|
116 |
+
elif condition_mode == "after":
|
117 |
+
loss = loss[condition_pos_id:]
|
118 |
+
res = loss.mean() if granularity == "sentence" else loss
|
119 |
+
return (res, past_key_values) if return_kv else res
|
120 |
+
|
121 |
+
def __call__(self, *args, **kwargs):
|
122 |
+
return self.compress(*args, **kwargs)
|
123 |
+
|
124 |
+
def compress(
|
125 |
+
self,
|
126 |
+
context: List[str],
|
127 |
+
instruction: str = "",
|
128 |
+
question: str = "",
|
129 |
+
ratio: float = 0.5,
|
130 |
+
target_token: float = -1,
|
131 |
+
iterative_size: int = 200,
|
132 |
+
force_context_ids: List[int] = None,
|
133 |
+
force_context_number: int = None,
|
134 |
+
use_sentence_level_filter: bool = False,
|
135 |
+
use_context_level_filter: bool = True,
|
136 |
+
use_token_level_filter: bool = True,
|
137 |
+
keep_split: bool = False,
|
138 |
+
keep_first_sentence: int = 0,
|
139 |
+
keep_last_sentence: int = 0,
|
140 |
+
keep_sentence_number: int = 0,
|
141 |
+
high_priority_bonus: int = 100,
|
142 |
+
context_budget: str = "+100",
|
143 |
+
token_budget_ratio: float = 1.4,
|
144 |
+
condition_in_question: str = "none",
|
145 |
+
reorder_context: str = "original",
|
146 |
+
dynamic_context_compression_ratio: float = 0.0,
|
147 |
+
condition_compare: bool = False,
|
148 |
+
add_instruction: bool = False,
|
149 |
+
rank_method: str = "llmlingua",
|
150 |
+
concate_question: bool = True,
|
151 |
+
):
|
152 |
+
if isinstance(context, str):
|
153 |
+
context = [context]
|
154 |
+
assert not (
|
155 |
+
rank_method == "longllmlingua" and not question
|
156 |
+
), "In the LongLLMLingua, it is necessary to set a question."
|
157 |
+
if condition_compare and "_condition" not in condition_in_question:
|
158 |
+
condition_in_question += "_condition"
|
159 |
+
if rank_method == "longllmlingua":
|
160 |
+
if condition_in_question == "none":
|
161 |
+
condition_in_question = "after"
|
162 |
+
elif rank_method == "llmlingua":
|
163 |
+
condition_in_question = (
|
164 |
+
"none"
|
165 |
+
if "_condition" not in condition_in_question
|
166 |
+
else "none_condition"
|
167 |
+
)
|
168 |
+
origin_tokens = len(
|
169 |
+
encoding.encode("\n\n".join([instruction] + context + [question]).strip())
|
170 |
+
)
|
171 |
+
context_tokens_length = [self.get_token_length(c) for c in context]
|
172 |
+
instruction_tokens_length, question_tokens_length = self.get_token_length(
|
173 |
+
instruction
|
174 |
+
), self.get_token_length(question)
|
175 |
+
if target_token == -1:
|
176 |
+
target_token = (
|
177 |
+
(
|
178 |
+
instruction_tokens_length
|
179 |
+
+ question_tokens_length
|
180 |
+
+ sum(context_tokens_length)
|
181 |
+
)
|
182 |
+
* (1 - ratio)
|
183 |
+
- instruction_tokens_length
|
184 |
+
- (question_tokens_length if concate_question else 0)
|
185 |
+
)
|
186 |
+
condition_flag = "_condition" in condition_in_question
|
187 |
+
condition_in_question = condition_in_question.replace("_condition", "")
|
188 |
+
|
189 |
+
if len(context) > 1 and use_context_level_filter:
|
190 |
+
context, dynamic_ratio = self.control_context_budget(
|
191 |
+
context,
|
192 |
+
context_tokens_length,
|
193 |
+
target_token,
|
194 |
+
force_context_ids,
|
195 |
+
force_context_number,
|
196 |
+
question,
|
197 |
+
condition_in_question,
|
198 |
+
reorder_context=reorder_context,
|
199 |
+
dynamic_context_compression_ratio=dynamic_context_compression_ratio,
|
200 |
+
rank_method=rank_method,
|
201 |
+
context_budget=context_budget,
|
202 |
+
)
|
203 |
+
else:
|
204 |
+
dynamic_ratio = [0.0] * len(context)
|
205 |
+
|
206 |
+
if use_sentence_level_filter:
|
207 |
+
context = self.control_sentence_budget(
|
208 |
+
context,
|
209 |
+
target_token,
|
210 |
+
keep_first_sentence=keep_first_sentence,
|
211 |
+
keep_last_sentence=keep_last_sentence,
|
212 |
+
keep_sentence_number=keep_sentence_number,
|
213 |
+
high_priority_bonus=high_priority_bonus,
|
214 |
+
token_budget_ratio=token_budget_ratio,
|
215 |
+
question=question,
|
216 |
+
condition_in_question=condition_in_question,
|
217 |
+
rank_method=rank_method,
|
218 |
+
)
|
219 |
+
|
220 |
+
if condition_flag:
|
221 |
+
if add_instruction:
|
222 |
+
context = [question + "\n\n" + instruction] + context
|
223 |
+
start = self.get_token_length(question + "\n\n" + instruction) + 2
|
224 |
+
else:
|
225 |
+
context = [question] + context
|
226 |
+
start = self.get_token_length(question) + 2
|
227 |
+
else:
|
228 |
+
start = 0
|
229 |
+
|
230 |
+
if use_token_level_filter:
|
231 |
+
context = self.iterative_compress_prompt(
|
232 |
+
context,
|
233 |
+
target_token,
|
234 |
+
iterative_size=iterative_size,
|
235 |
+
keep_split=keep_split,
|
236 |
+
start=start,
|
237 |
+
dynamic_ratio=dynamic_ratio,
|
238 |
+
condition_compare=condition_compare,
|
239 |
+
)
|
240 |
+
compressed_prompt = (
|
241 |
+
self.tokenizer.batch_decode(context[0])[0]
|
242 |
+
.replace("<s> ", "")
|
243 |
+
.replace("<s>", "")
|
244 |
+
)
|
245 |
+
else:
|
246 |
+
compressed_prompt = "\n\n".join(context)
|
247 |
+
|
248 |
+
if instruction:
|
249 |
+
compressed_prompt = instruction + "\n\n" + compressed_prompt
|
250 |
+
if question and concate_question:
|
251 |
+
compressed_prompt = compressed_prompt + "\n\n" + question
|
252 |
+
|
253 |
+
compressed_tokens = len(encoding.encode(compressed_prompt))
|
254 |
+
saving = (origin_tokens - compressed_tokens) * 0.06 / 1000
|
255 |
+
return {
|
256 |
+
"compressed_prompt": compressed_prompt,
|
257 |
+
"origin_tokens": origin_tokens,
|
258 |
+
"compressed_tokens": compressed_tokens,
|
259 |
+
# "ratio": f"{origin_tokens/compressed_tokens:.1f}x",
|
260 |
+
"ratio": compressed_tokens / origin_tokens,
|
261 |
+
# "saving": f", Saving ${saving:.1f} in GPT-4.",
|
262 |
+
}
|
263 |
+
|
264 |
+
def get_token_length(self, text: str, add_special_tokens: bool = True):
|
265 |
+
return len(
|
266 |
+
self.tokenizer(text, add_special_tokens=add_special_tokens).input_ids
|
267 |
+
)
|
268 |
+
|
269 |
+
def get_condition_ppl(
|
270 |
+
self,
|
271 |
+
text: str,
|
272 |
+
question: str,
|
273 |
+
condition_in_question: str = "none",
|
274 |
+
granularity: str = "sentence",
|
275 |
+
):
|
276 |
+
if condition_in_question == "none":
|
277 |
+
return self.get_ppl(text, granularity=granularity)
|
278 |
+
elif condition_in_question == "before":
|
279 |
+
return self.get_ppl(
|
280 |
+
question + text,
|
281 |
+
granularity=granularity,
|
282 |
+
condition_mode="after",
|
283 |
+
condition_pos_id=self.get_token_length(question) - 1,
|
284 |
+
)
|
285 |
+
elif condition_in_question == "after":
|
286 |
+
return self.get_ppl(
|
287 |
+
text + question,
|
288 |
+
granularity=granularity,
|
289 |
+
condition_mode="after",
|
290 |
+
condition_pos_id=self.get_token_length(text) - 1,
|
291 |
+
)
|
292 |
+
|
293 |
+
def get_dynamic_compression_ratio(
|
294 |
+
self,
|
295 |
+
context: list,
|
296 |
+
target_token: float,
|
297 |
+
iterative_size: int,
|
298 |
+
dynamic_ratio: list,
|
299 |
+
start: int,
|
300 |
+
):
|
301 |
+
def get_ratio(base: float, delta: float):
|
302 |
+
return max(min(1, base + delta), 0)
|
303 |
+
|
304 |
+
context_length = [self.get_token_length(ii, False) + 2 for ii in context]
|
305 |
+
if start:
|
306 |
+
context_length = context_length[1:]
|
307 |
+
tau = target_token / (sum(context_length) + 1)
|
308 |
+
res, idx, last, last_target = [], 0, 1, []
|
309 |
+
while idx < len(context_length):
|
310 |
+
if last + context_length[idx] >= iterative_size:
|
311 |
+
last_target.append(
|
312 |
+
(iterative_size - last, get_ratio(tau, dynamic_ratio[idx]))
|
313 |
+
)
|
314 |
+
res.append(last_target)
|
315 |
+
last = last + context_length[idx] - iterative_size
|
316 |
+
if last > iterative_size:
|
317 |
+
k = last // iterative_size
|
318 |
+
res.extend(
|
319 |
+
[[(iterative_size, get_ratio(tau, dynamic_ratio[idx]))]] * k
|
320 |
+
)
|
321 |
+
last -= k * iterative_size
|
322 |
+
|
323 |
+
last_target = (
|
324 |
+
[(last, get_ratio(tau, dynamic_ratio[idx]))] if last else []
|
325 |
+
)
|
326 |
+
else:
|
327 |
+
last += context_length[idx]
|
328 |
+
last_target.append(
|
329 |
+
(context_length[idx], get_ratio(tau, dynamic_ratio[idx]))
|
330 |
+
)
|
331 |
+
idx += 1
|
332 |
+
if last_target:
|
333 |
+
res.append(last_target)
|
334 |
+
return res
|
335 |
+
|
336 |
+
def control_context_budget(
|
337 |
+
self,
|
338 |
+
context: List[str],
|
339 |
+
context_tokens_length: List[int],
|
340 |
+
target_token: float,
|
341 |
+
force_context_ids: List[int] = None,
|
342 |
+
force_context_number: int = None,
|
343 |
+
question: str = "",
|
344 |
+
condition_in_question: str = "none",
|
345 |
+
reorder_context: str = "original",
|
346 |
+
dynamic_context_compression_ratio: float = 0.0,
|
347 |
+
rank_method: str = "longllmlingua",
|
348 |
+
context_budget: str = "+100",
|
349 |
+
):
|
350 |
+
if force_context_ids is not None:
|
351 |
+
return [context[ii] for ii in force_context_ids]
|
352 |
+
demostrations_sort = self.get_rank_results(
|
353 |
+
context,
|
354 |
+
question,
|
355 |
+
rank_method,
|
356 |
+
condition_in_question,
|
357 |
+
context_tokens_length,
|
358 |
+
)
|
359 |
+
|
360 |
+
if target_token < 0:
|
361 |
+
target_token = 100
|
362 |
+
target_token = eval("target_token" + context_budget)
|
363 |
+
res = []
|
364 |
+
used = force_context_ids if force_context_ids is not None else []
|
365 |
+
|
366 |
+
self.context_idxs.append([x for idx, (x, _) in enumerate(demostrations_sort)])
|
367 |
+
for idx, _ in demostrations_sort:
|
368 |
+
if idx >= len(context_tokens_length):
|
369 |
+
continue
|
370 |
+
target_token -= context_tokens_length[idx]
|
371 |
+
if idx not in used:
|
372 |
+
used.append(idx)
|
373 |
+
if target_token < 0 or (
|
374 |
+
force_context_number is not None and len(res) >= force_context_number
|
375 |
+
):
|
376 |
+
break
|
377 |
+
original_used = used
|
378 |
+
if reorder_context == "original":
|
379 |
+
used = sorted(used)
|
380 |
+
elif reorder_context == "two_stage":
|
381 |
+
l, r = [_ for idx, _ in enumerate(used) if idx % 2 == 0], [
|
382 |
+
_ for idx, _ in enumerate(used) if idx % 2 == 1
|
383 |
+
]
|
384 |
+
used = l + r[::-1]
|
385 |
+
|
386 |
+
if dynamic_context_compression_ratio > 0:
|
387 |
+
N = len(used)
|
388 |
+
if condition_in_question:
|
389 |
+
rank = [
|
390 |
+
i
|
391 |
+
for i, _ in self.get_rank_results(
|
392 |
+
context,
|
393 |
+
question,
|
394 |
+
"longllmlingua",
|
395 |
+
"after",
|
396 |
+
context_tokens_length,
|
397 |
+
)
|
398 |
+
]
|
399 |
+
used = sorted(used, key=lambda x: rank.index(x))
|
400 |
+
dynamic_ratio = [
|
401 |
+
i * (abs(dynamic_context_compression_ratio) / (N - 1)) if N > 1 else 0
|
402 |
+
for i in range(-(N - 1), N, 2)
|
403 |
+
][::-1]
|
404 |
+
dynamic_ratio_map = {i: j for i, j in zip(original_used, dynamic_ratio)}
|
405 |
+
dynamic_ratio = [dynamic_ratio_map[i] for i in used]
|
406 |
+
else:
|
407 |
+
dynamic_ratio = [0.0] * len(used)
|
408 |
+
|
409 |
+
res = [context[idx] for idx in used if idx < len(context)]
|
410 |
+
return res, dynamic_ratio
|
411 |
+
|
412 |
+
def control_sentence_budget(
|
413 |
+
self,
|
414 |
+
context: List[str],
|
415 |
+
target_token: float,
|
416 |
+
keep_first_sentence: int = 0,
|
417 |
+
keep_last_sentence: int = 0,
|
418 |
+
keep_sentence_number: int = 0,
|
419 |
+
high_priority_bonus: int = 100,
|
420 |
+
token_budget_ratio: float = 1.4,
|
421 |
+
question: str = "",
|
422 |
+
condition_in_question: str = "none",
|
423 |
+
rank_method: str = "longllmlingua",
|
424 |
+
):
|
425 |
+
def keep_sentence(dem_idx: int, sent_keep: int):
|
426 |
+
idxs = sorted(dem_g[dem_idx], key=lambda x: sentence_ppl[x])[:sent_keep]
|
427 |
+
for idx in idxs:
|
428 |
+
sentence_ppl[idx] += high_priority_bonus
|
429 |
+
|
430 |
+
sentences = [nltk.sent_tokenize(c) for c in context]
|
431 |
+
dem_g, s2de, idx = defaultdict(set), defaultdict(int), 0
|
432 |
+
for idx_d, s in enumerate(sentences):
|
433 |
+
for _ in s:
|
434 |
+
dem_g[idx_d].add(idx)
|
435 |
+
s2de[idx] = idx_d
|
436 |
+
idx += 1
|
437 |
+
|
438 |
+
context_sentences = [s for ii in sentences for s in ii]
|
439 |
+
sentence_tokens_length = [
|
440 |
+
self.get_token_length(sentence) for sentence in context_sentences
|
441 |
+
]
|
442 |
+
N = len(context_sentences)
|
443 |
+
flags = list(range(len(context_sentences)))
|
444 |
+
if len(sentence_tokens_length) == 1:
|
445 |
+
return context
|
446 |
+
if rank_method == "longllmlingua":
|
447 |
+
sentence_ppl = [
|
448 |
+
self.get_condition_ppl(sentence, question, condition_in_question)
|
449 |
+
.cpu()
|
450 |
+
.numpy()
|
451 |
+
.item()
|
452 |
+
for sentence in context_sentences
|
453 |
+
]
|
454 |
+
if keep_first_sentence:
|
455 |
+
sentence_ppl[:keep_first_sentence] = [
|
456 |
+
ii + high_priority_bonus
|
457 |
+
for ii in sentence_ppl[:keep_first_sentence]
|
458 |
+
]
|
459 |
+
if keep_last_sentence:
|
460 |
+
sentence_ppl[-keep_last_sentence:] = [
|
461 |
+
ii + high_priority_bonus
|
462 |
+
for ii in sentence_ppl[-keep_last_sentence:]
|
463 |
+
]
|
464 |
+
if keep_sentence_number:
|
465 |
+
for dem_idx in range(len(sentences)):
|
466 |
+
keep_sentence(dem_idx, keep_sentence_number)
|
467 |
+
sort_direct = -1 if condition_in_question == "none" else 1
|
468 |
+
sent_sort = sorted(
|
469 |
+
enumerate(sentence_ppl), key=lambda x: sort_direct * x[1]
|
470 |
+
)
|
471 |
+
else:
|
472 |
+
sent_sort = self.get_rank_results(
|
473 |
+
context_sentences,
|
474 |
+
question,
|
475 |
+
rank_method,
|
476 |
+
condition_in_question,
|
477 |
+
[0] * len(context_sentences),
|
478 |
+
)
|
479 |
+
|
480 |
+
sentence_flags = [False] * N
|
481 |
+
if target_token < 0:
|
482 |
+
target_token = 100
|
483 |
+
target_token *= token_budget_ratio
|
484 |
+
res = []
|
485 |
+
for idx, _ in sent_sort:
|
486 |
+
idx = flags[idx]
|
487 |
+
target_token -= sentence_tokens_length[idx]
|
488 |
+
sentence_flags[idx] = True
|
489 |
+
if target_token < 0:
|
490 |
+
break
|
491 |
+
idx = 0
|
492 |
+
res = []
|
493 |
+
for s in sentences:
|
494 |
+
tmp = [jj for ii, jj in enumerate(s) if sentence_flags[idx + ii]]
|
495 |
+
res.append("\n".join(tmp))
|
496 |
+
idx += len(s)
|
497 |
+
return res
|
498 |
+
|
499 |
+
def get_compressed_input(
|
500 |
+
self,
|
501 |
+
loss,
|
502 |
+
input_ids,
|
503 |
+
attention_mask,
|
504 |
+
end=200,
|
505 |
+
iterative_size=200,
|
506 |
+
threshold=0.5,
|
507 |
+
keep_flag=None,
|
508 |
+
split_token_id: int = 13,
|
509 |
+
start: int = 0,
|
510 |
+
self_loss=None,
|
511 |
+
self_input_ids=None,
|
512 |
+
self_attention_mask=None,
|
513 |
+
):
|
514 |
+
if self_loss is not None:
|
515 |
+
need_idx = torch.concat(
|
516 |
+
[
|
517 |
+
loss[:start] > 0,
|
518 |
+
self_loss[: loss[start:].shape[0]] - loss[start:] > threshold,
|
519 |
+
loss[:1] > 0,
|
520 |
+
]
|
521 |
+
)
|
522 |
+
else:
|
523 |
+
need_idx = torch.concat([loss > threshold, loss[:1] > 0])
|
524 |
+
need_idx[end:] = 1
|
525 |
+
need_idx[: end - iterative_size] = 1
|
526 |
+
loss = loss[need_idx[:-1]]
|
527 |
+
if self_loss is not None:
|
528 |
+
if need_idx.shape[0] < self_loss.shape[0] + start + 1:
|
529 |
+
need_idx = torch.cat(
|
530 |
+
[
|
531 |
+
need_idx,
|
532 |
+
torch.ones(
|
533 |
+
self_loss.shape[0] - need_idx.shape[0] + start + 1,
|
534 |
+
dtype=torch.bool,
|
535 |
+
).to(need_idx.device),
|
536 |
+
]
|
537 |
+
)
|
538 |
+
self_loss = self_loss[need_idx[start:-1]]
|
539 |
+
|
540 |
+
if need_idx.shape[0] < input_ids.shape[1]:
|
541 |
+
need_idx = torch.cat(
|
542 |
+
[
|
543 |
+
need_idx,
|
544 |
+
torch.ones(
|
545 |
+
input_ids.shape[1] - need_idx.shape[0], dtype=torch.bool
|
546 |
+
).to(need_idx.device),
|
547 |
+
]
|
548 |
+
)
|
549 |
+
elif need_idx.shape[0] > input_ids.shape[1]:
|
550 |
+
need_idx = need_idx[: input_ids.shape[1]]
|
551 |
+
|
552 |
+
if keep_flag is not None:
|
553 |
+
need_idx[keep_flag == 1] = 1
|
554 |
+
last = -1
|
555 |
+
if keep_flag is not None:
|
556 |
+
for ii in range(end - iterative_size, end):
|
557 |
+
if need_idx[ii] != 1:
|
558 |
+
continue
|
559 |
+
now = input_ids[0][ii].detach().cpu().item()
|
560 |
+
if (
|
561 |
+
now == split_token_id
|
562 |
+
and last == split_token_id
|
563 |
+
and keep_flag[ii].detach().cpu().item() == 0
|
564 |
+
):
|
565 |
+
need_idx[ii] = 0
|
566 |
+
else:
|
567 |
+
last = now
|
568 |
+
compressed_input_ids = input_ids[attention_mask == 1][need_idx].unsqueeze(0)
|
569 |
+
compressed_attention_mask = attention_mask[attention_mask == 1][
|
570 |
+
need_idx
|
571 |
+
].unsqueeze(0)
|
572 |
+
|
573 |
+
if self_loss is not None:
|
574 |
+
self_compressed_input_ids = self_input_ids[self_attention_mask == 1][
|
575 |
+
need_idx[start:]
|
576 |
+
].unsqueeze(0)
|
577 |
+
self_compressed_attention_mask = self_attention_mask[
|
578 |
+
self_attention_mask == 1
|
579 |
+
][need_idx[start:]].unsqueeze(0)
|
580 |
+
else:
|
581 |
+
self_compressed_input_ids, self_compressed_attention_mask = None, None
|
582 |
+
if keep_flag is not None:
|
583 |
+
if len(keep_flag) > len(need_idx):
|
584 |
+
keep_flag = torch.cat(
|
585 |
+
[
|
586 |
+
keep_flag[:start],
|
587 |
+
keep_flag[start : len(need_idx) + start][need_idx],
|
588 |
+
keep_flag[start + len(need_idx) :],
|
589 |
+
]
|
590 |
+
)
|
591 |
+
else:
|
592 |
+
keep_flag = keep_flag[need_idx]
|
593 |
+
end -= (need_idx[:end] == 0).sum()
|
594 |
+
return (
|
595 |
+
compressed_input_ids,
|
596 |
+
compressed_attention_mask,
|
597 |
+
keep_flag,
|
598 |
+
end,
|
599 |
+
loss,
|
600 |
+
self_loss,
|
601 |
+
self_compressed_input_ids,
|
602 |
+
self_compressed_attention_mask,
|
603 |
+
)
|
604 |
+
|
605 |
+
def get_estimate_threshold_base_distribution(
|
606 |
+
self, ppl, ratio: float, condition_flag: bool = False
|
607 |
+
):
|
608 |
+
ppl = ppl[ppl != 10000]
|
609 |
+
target_token = max(0, min(len(ppl) - 1, int(len(ppl) * ratio) - 1))
|
610 |
+
return (
|
611 |
+
ppl.sort(descending=not condition_flag)
|
612 |
+
.values[target_token]
|
613 |
+
.detach()
|
614 |
+
.cpu()
|
615 |
+
.item()
|
616 |
+
)
|
617 |
+
|
618 |
+
def iterative_compress_prompt(
|
619 |
+
self,
|
620 |
+
context: List[str],
|
621 |
+
target_token: float,
|
622 |
+
iterative_size: int = 200,
|
623 |
+
keep_split: bool = False,
|
624 |
+
split_token_id: int = 13,
|
625 |
+
start: int = 0,
|
626 |
+
dynamic_ratio: list = None,
|
627 |
+
condition_compare: bool = False,
|
628 |
+
):
|
629 |
+
iterative_ratios = self.get_dynamic_compression_ratio(
|
630 |
+
context, target_token, iterative_size, dynamic_ratio, start
|
631 |
+
)
|
632 |
+
context = "\n\n".join(context)
|
633 |
+
tokenized_text = self.tokenizer(context, return_tensors="pt")
|
634 |
+
input_ids = tokenized_text["input_ids"].to(self.device)
|
635 |
+
attention_mask = tokenized_text["attention_mask"].to(self.device)
|
636 |
+
|
637 |
+
N = (attention_mask == 1).sum()
|
638 |
+
compressed_input_ids, compressed_attention_mask = input_ids, attention_mask
|
639 |
+
if condition_compare:
|
640 |
+
self_input_ids, self_attention_mask = (
|
641 |
+
input_ids[:, start:],
|
642 |
+
attention_mask[:, start:],
|
643 |
+
)
|
644 |
+
self_compressed_input_ids, self_compressed_attention_mask = (
|
645 |
+
self_input_ids,
|
646 |
+
self_attention_mask,
|
647 |
+
)
|
648 |
+
|
649 |
+
end = min(iterative_size + start, compressed_input_ids.shape[1])
|
650 |
+
threshold, keep_flag = None, None
|
651 |
+
if keep_split:
|
652 |
+
input_ids_numpy = input_ids.cpu().detach().numpy()[0]
|
653 |
+
N = len(input_ids_numpy)
|
654 |
+
keep_flag = [
|
655 |
+
int(
|
656 |
+
(
|
657 |
+
ii > 0
|
658 |
+
and input_ids_numpy[ii] == split_token_id
|
659 |
+
and input_ids_numpy[ii - 1] == split_token_id
|
660 |
+
)
|
661 |
+
or (
|
662 |
+
ii < N - 1
|
663 |
+
and input_ids_numpy[ii] == split_token_id
|
664 |
+
and input_ids_numpy[ii + 1] == split_token_id
|
665 |
+
)
|
666 |
+
)
|
667 |
+
for ii in range(N)
|
668 |
+
]
|
669 |
+
keep_flag = torch.tensor(keep_flag).to(self.device)
|
670 |
+
past_key_values, past_loss, ready_end = None, None, 0
|
671 |
+
self_past_key_values, self_past_loss, self_ready_end = None, None, 0
|
672 |
+
pop_compressed_input_ids, pop_self_compressed_input_ids = None, None
|
673 |
+
idx = 0
|
674 |
+
while end <= compressed_input_ids.shape[1]:
|
675 |
+
if end > self.max_position_embeddings and past_key_values is not None:
|
676 |
+
# KV-Cache Compression
|
677 |
+
e, s = end - self.max_position_embeddings, self.cache_bos_num
|
678 |
+
if pop_compressed_input_ids is None:
|
679 |
+
pop_compressed_input_ids = compressed_input_ids[:, :e]
|
680 |
+
else:
|
681 |
+
pop_compressed_input_ids = torch.cat(
|
682 |
+
[pop_compressed_input_ids, compressed_input_ids[:, :e]], dim=-1
|
683 |
+
)
|
684 |
+
compressed_input_ids = compressed_input_ids[:, e:]
|
685 |
+
compressed_attention_mask = compressed_attention_mask[:, e:]
|
686 |
+
past_key_values = [
|
687 |
+
[
|
688 |
+
torch.cat([k[..., :s, :], k[..., s + e :, :]], dim=-2),
|
689 |
+
torch.cat([v[..., :s, :], v[..., s + e :, :]], dim=-2),
|
690 |
+
]
|
691 |
+
for k, v in past_key_values
|
692 |
+
]
|
693 |
+
end, ready_end = end - e, ready_end - e
|
694 |
+
if condition_compare:
|
695 |
+
self_ready_end -= e
|
696 |
+
if pop_self_compressed_input_ids is None:
|
697 |
+
pop_self_compressed_input_ids = self_compressed_input_ids[:, :e]
|
698 |
+
else:
|
699 |
+
pop_self_compressed_input_ids = torch.cat(
|
700 |
+
[
|
701 |
+
pop_self_compressed_input_ids,
|
702 |
+
self_compressed_input_ids[:, :e],
|
703 |
+
],
|
704 |
+
dim=-1,
|
705 |
+
)
|
706 |
+
self_compressed_input_ids = self_compressed_input_ids[:, e:]
|
707 |
+
self_compressed_attention_mask = self_compressed_attention_mask[
|
708 |
+
:, e:
|
709 |
+
]
|
710 |
+
self_past_key_values = [
|
711 |
+
[
|
712 |
+
torch.cat([k[..., :s, :], k[..., s + e :, :]], dim=-2),
|
713 |
+
torch.cat([v[..., :s, :], v[..., s + e :, :]], dim=-2),
|
714 |
+
]
|
715 |
+
for k, v in self_past_key_values
|
716 |
+
]
|
717 |
+
|
718 |
+
loss, past_key_values = self.get_ppl(
|
719 |
+
"",
|
720 |
+
"token",
|
721 |
+
compressed_input_ids,
|
722 |
+
compressed_attention_mask,
|
723 |
+
past_key_values=past_key_values,
|
724 |
+
return_kv=True,
|
725 |
+
end=end if idx else None,
|
726 |
+
)
|
727 |
+
if past_loss is not None:
|
728 |
+
if end - 1 > len(past_loss):
|
729 |
+
past_loss = torch.cat(
|
730 |
+
[past_loss, torch.zeros_like(loss)[: end - 1 - len(past_loss)]]
|
731 |
+
)
|
732 |
+
past_loss[ready_end : end - 1] = loss
|
733 |
+
loss = past_loss
|
734 |
+
else:
|
735 |
+
past_loss = loss
|
736 |
+
if idx:
|
737 |
+
past_key_values = [
|
738 |
+
[k[:, :, : end - iterative_size], v[:, :, : end - iterative_size]]
|
739 |
+
for k, v in past_key_values
|
740 |
+
]
|
741 |
+
else:
|
742 |
+
past_key_values = None
|
743 |
+
|
744 |
+
if condition_compare:
|
745 |
+
self_loss, self_past_key_values = self.get_ppl(
|
746 |
+
"",
|
747 |
+
"token",
|
748 |
+
self_compressed_input_ids,
|
749 |
+
self_compressed_attention_mask,
|
750 |
+
past_key_values=self_past_key_values,
|
751 |
+
return_kv=True,
|
752 |
+
end=end - start if idx else None,
|
753 |
+
)
|
754 |
+
if self_past_loss is not None:
|
755 |
+
if end - start - 1 > len(self_past_loss):
|
756 |
+
self_past_loss = torch.cat(
|
757 |
+
[
|
758 |
+
self_past_loss,
|
759 |
+
torch.zeros_like(self_loss)[
|
760 |
+
: end - 1 - start - len(self_past_loss)
|
761 |
+
],
|
762 |
+
]
|
763 |
+
)
|
764 |
+
self_past_loss[self_ready_end : end - start - 1] = self_loss
|
765 |
+
self_loss = self_past_loss
|
766 |
+
else:
|
767 |
+
self_past_loss = self_loss
|
768 |
+
if idx:
|
769 |
+
self_past_key_values = [
|
770 |
+
[
|
771 |
+
k[:, :, : end - iterative_size - start],
|
772 |
+
v[:, :, : end - iterative_size - start],
|
773 |
+
]
|
774 |
+
for k, v in self_past_key_values
|
775 |
+
]
|
776 |
+
else:
|
777 |
+
self_past_key_values = None
|
778 |
+
|
779 |
+
self_ready_end = (
|
780 |
+
end - start - iterative_size if not (start and idx == 0) else 0
|
781 |
+
)
|
782 |
+
ready_end = end - iterative_size if not (start and idx == 0) else 0
|
783 |
+
|
784 |
+
for delta_end, ratio in iterative_ratios[idx]:
|
785 |
+
loss = past_loss
|
786 |
+
if condition_compare:
|
787 |
+
self_loss = self_past_loss
|
788 |
+
threshold = self.get_estimate_threshold_base_distribution(
|
789 |
+
self_loss[: loss[start:].shape[0]] - loss[start:], ratio, False
|
790 |
+
)
|
791 |
+
else:
|
792 |
+
threshold = self.get_estimate_threshold_base_distribution(
|
793 |
+
loss, ratio, False
|
794 |
+
)
|
795 |
+
|
796 |
+
(
|
797 |
+
compressed_input_ids,
|
798 |
+
compressed_attention_mask,
|
799 |
+
keep_flag,
|
800 |
+
end,
|
801 |
+
past_loss,
|
802 |
+
self_past_loss,
|
803 |
+
self_compressed_input_ids,
|
804 |
+
self_compressed_attention_mask,
|
805 |
+
) = self.get_compressed_input(
|
806 |
+
loss,
|
807 |
+
compressed_input_ids,
|
808 |
+
compressed_attention_mask,
|
809 |
+
end - iterative_size + delta_end,
|
810 |
+
iterative_size=delta_end,
|
811 |
+
threshold=threshold,
|
812 |
+
keep_flag=keep_flag,
|
813 |
+
split_token_id=split_token_id,
|
814 |
+
start=start,
|
815 |
+
self_loss=self_loss if condition_compare else None,
|
816 |
+
self_input_ids=self_compressed_input_ids
|
817 |
+
if condition_compare
|
818 |
+
else None,
|
819 |
+
self_attention_mask=self_compressed_attention_mask
|
820 |
+
if condition_compare
|
821 |
+
else None,
|
822 |
+
)
|
823 |
+
end += iterative_size
|
824 |
+
idx += 1
|
825 |
+
if pop_compressed_input_ids is not None:
|
826 |
+
compressed_input_ids = torch.cat(
|
827 |
+
[pop_compressed_input_ids, compressed_input_ids], dim=-1
|
828 |
+
)
|
829 |
+
return compressed_input_ids[:, start:], compressed_attention_mask[:, start:]
|
830 |
+
|
831 |
+
def recover(
|
832 |
+
self,
|
833 |
+
original_prompt: str,
|
834 |
+
compressed_prompt: str,
|
835 |
+
response: str,
|
836 |
+
):
|
837 |
+
def match_from_compressed(response_word):
|
838 |
+
response_input_ids = self.tokenizer(
|
839 |
+
response_word, add_special_tokens=False
|
840 |
+
)["input_ids"]
|
841 |
+
response_set, response_c = set(response_input_ids), defaultdict(list)
|
842 |
+
for idx in range(M):
|
843 |
+
if original_input_ids[idx] in response_set:
|
844 |
+
response_c[original_input_ids[idx]].append(idx)
|
845 |
+
res, res_min, res_c = None, float("inf"), 1
|
846 |
+
n = len(response_input_ids)
|
847 |
+
for l in response_c[response_input_ids[0]]:
|
848 |
+
x, y, c = 0, l, 1
|
849 |
+
for x in range(1, n):
|
850 |
+
idx = bisect.bisect_right(response_c[response_input_ids[x]], y)
|
851 |
+
if (
|
852 |
+
idx >= len(response_c[response_input_ids[x]])
|
853 |
+
or response_c[response_input_ids[x]][idx] - y > 10
|
854 |
+
):
|
855 |
+
continue
|
856 |
+
c += 1
|
857 |
+
y = response_c[response_input_ids[x]][idx]
|
858 |
+
if c > res_c:
|
859 |
+
res_c = c
|
860 |
+
res_min = y - l + 1
|
861 |
+
res = (l, y + 1)
|
862 |
+
elif c == res_c and y - l + 1 < res_min:
|
863 |
+
res_min = y - l + 1
|
864 |
+
res = (l, y + 1)
|
865 |
+
|
866 |
+
if res is None:
|
867 |
+
return response_word
|
868 |
+
# while l > 0 and not self.tokenizer.convert_ids_to_tokens(original_input_ids[l]).startswith("_"):
|
869 |
+
# l -= 1
|
870 |
+
# while r < M - 1 and not self.tokenizer.convert_ids_to_tokens(original_input_ids[l]).startswith("_"):
|
871 |
+
# l -= 1
|
872 |
+
return self.tokenizer.decode(original_input_ids[res[0] : res[1]])
|
873 |
+
|
874 |
+
response_words = response.split(" ")
|
875 |
+
|
876 |
+
original_input_ids = self.tokenizer(original_prompt, add_special_tokens=False)[
|
877 |
+
"input_ids"
|
878 |
+
]
|
879 |
+
N, M = len(response_words), len(original_input_ids)
|
880 |
+
recovered_response_words = []
|
881 |
+
l = 0
|
882 |
+
while l < N:
|
883 |
+
if response_words[l] not in compressed_prompt:
|
884 |
+
recovered_response_words.append(response_words[l])
|
885 |
+
l += 1
|
886 |
+
continue
|
887 |
+
r = l
|
888 |
+
while (
|
889 |
+
r + 1 < N and " ".join(response_words[l : r + 2]) in compressed_prompt
|
890 |
+
):
|
891 |
+
r += 1
|
892 |
+
|
893 |
+
match_words = match_from_compressed(" ".join(response_words[l : r + 1]))
|
894 |
+
recovered_response_words.append(match_words)
|
895 |
+
l = r + 1
|
896 |
+
return " ".join(recovered_response_words)
|
897 |
+
|
898 |
+
def get_rank_results(
|
899 |
+
self,
|
900 |
+
context: list,
|
901 |
+
question: str,
|
902 |
+
rank_method: str,
|
903 |
+
condition_in_question: str,
|
904 |
+
context_tokens_length: list,
|
905 |
+
):
|
906 |
+
def get_distance_bm25(corpus, query):
|
907 |
+
from rank_bm25 import BM25Okapi
|
908 |
+
|
909 |
+
tokenized_corpus = [doc.split(" ") for doc in corpus]
|
910 |
+
bm25 = BM25Okapi(tokenized_corpus)
|
911 |
+
tokenized_query = query.split(" ")
|
912 |
+
doc_scores = bm25.get_scores(tokenized_query)
|
913 |
+
idx = [(ii, 0) for ii in (-doc_scores).argsort()]
|
914 |
+
return idx
|
915 |
+
|
916 |
+
def get_distance_gzip(corpus, query):
|
917 |
+
def get_score(x, y):
|
918 |
+
cx, cy = len(gzip.compress(x.encode())), len(gzip.compress(y.encode()))
|
919 |
+
cxy = len(gzip.compress(f"{x} {y}".encode()))
|
920 |
+
return (cxy - min(cx, cy)) / max(cx, cy)
|
921 |
+
|
922 |
+
import gzip
|
923 |
+
|
924 |
+
doc_scores = [get_score(doc, query) for doc in corpus]
|
925 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
926 |
+
return idx
|
927 |
+
|
928 |
+
def get_distance_sentbert(corpus, query):
|
929 |
+
from sentence_transformers import SentenceTransformer, util
|
930 |
+
|
931 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
932 |
+
self.retrieval_model = SentenceTransformer("multi-qa-mpnet-base-dot-v1")
|
933 |
+
self.retrieval_model_name = rank_method
|
934 |
+
doc_embeds = self.retrieval_model.encode(corpus)
|
935 |
+
query = self.retrieval_model.encode(query)
|
936 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
937 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
938 |
+
return idx
|
939 |
+
|
940 |
+
def get_distance_openai(corpus, query):
|
941 |
+
import openai
|
942 |
+
from sentence_transformers import util
|
943 |
+
|
944 |
+
openai.api_key = self.open_api_config.get("api_key", "")
|
945 |
+
openai.api_base = self.open_api_config.get(
|
946 |
+
"api_base", "https://api.openai.com/v1"
|
947 |
+
)
|
948 |
+
openai.api_type = self.open_api_config.get("api_type", "open_ai")
|
949 |
+
openai.api_version = self.open_api_config.get("api_version", "2023-05-15")
|
950 |
+
engine = self.open_api_config.get("engine", "text-embedding-ada-002")
|
951 |
+
|
952 |
+
def get_embed(text):
|
953 |
+
return openai.Embedding.create(
|
954 |
+
input=[text.replace("\n", " ")], engine=engine
|
955 |
+
)["LongBench"][0]["embedding"]
|
956 |
+
|
957 |
+
doc_embeds = [get_embed(i) for i in corpus]
|
958 |
+
query = get_embed(query)
|
959 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
960 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
961 |
+
return idx
|
962 |
+
|
963 |
+
def get_distance_sentbert_bge(corpus, query):
|
964 |
+
from sentence_transformers import SentenceTransformer, util
|
965 |
+
|
966 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
967 |
+
self.retrieval_model = SentenceTransformer("BAAI/bge-large-en-v1.5")
|
968 |
+
self.retrieval_model_name = rank_method
|
969 |
+
doc_embeds = self.retrieval_model.encode(
|
970 |
+
[i for i in corpus], normalize_embeddings=True
|
971 |
+
)
|
972 |
+
query = self.retrieval_model.encode(query, normalize_embeddings=True)
|
973 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
974 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
975 |
+
return idx
|
976 |
+
|
977 |
+
def get_distance_bge_ranker(corpus, query):
|
978 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
979 |
+
|
980 |
+
pairs = [[i, query] for i in corpus]
|
981 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
982 |
+
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-large")
|
983 |
+
model = (
|
984 |
+
AutoModelForSequenceClassification.from_pretrained(
|
985 |
+
"BAAI/bge-reranker-large"
|
986 |
+
)
|
987 |
+
.eval()
|
988 |
+
.to(self.device)
|
989 |
+
)
|
990 |
+
self.retrieval_model = [tokenizer, model]
|
991 |
+
self.retrieval_model_name = rank_method
|
992 |
+
with torch.no_grad():
|
993 |
+
inputs = self.retrieval_model[0](
|
994 |
+
pairs,
|
995 |
+
padding=True,
|
996 |
+
truncation=True,
|
997 |
+
return_tensors="pt",
|
998 |
+
max_length=512,
|
999 |
+
).to(self.device)
|
1000 |
+
scores = (
|
1001 |
+
self.retrieval_model[1](**inputs, return_dict=True)
|
1002 |
+
.logits.view(
|
1003 |
+
-1,
|
1004 |
+
)
|
1005 |
+
.float()
|
1006 |
+
)
|
1007 |
+
idx = [(ii, 0) for ii in np.argsort(-scores.cpu())]
|
1008 |
+
return idx
|
1009 |
+
|
1010 |
+
def get_distance_bge_llmembedder(corpus, query):
|
1011 |
+
from transformers import AutoModel, AutoTokenizer
|
1012 |
+
|
1013 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
1014 |
+
tokenizer = AutoTokenizer.from_pretrained("BAAI/llm-embedder")
|
1015 |
+
model = (
|
1016 |
+
AutoModel.from_pretrained("BAAI/llm-embedder")
|
1017 |
+
.eval()
|
1018 |
+
.to(self.device)
|
1019 |
+
)
|
1020 |
+
self.retrieval_model = [tokenizer, model]
|
1021 |
+
self.retrieval_model_name = rank_method
|
1022 |
+
|
1023 |
+
instruction_qa_query = (
|
1024 |
+
"Represent this query for retrieving relevant documents: "
|
1025 |
+
)
|
1026 |
+
instruction_qa_key = "Represent this document for retrieval: "
|
1027 |
+
queries = [instruction_qa_query + query for _ in corpus]
|
1028 |
+
keys = [instruction_qa_key + key for key in corpus]
|
1029 |
+
with torch.no_grad():
|
1030 |
+
query_inputs = self.retrieval_model[0](
|
1031 |
+
queries,
|
1032 |
+
padding=True,
|
1033 |
+
truncation=True,
|
1034 |
+
return_tensors="pt",
|
1035 |
+
max_length=512,
|
1036 |
+
).to(self.device)
|
1037 |
+
key_inputs = self.retrieval_model[0](
|
1038 |
+
keys,
|
1039 |
+
padding=True,
|
1040 |
+
truncation=True,
|
1041 |
+
return_tensors="pt",
|
1042 |
+
max_length=512,
|
1043 |
+
).to(self.device)
|
1044 |
+
query_outputs = self.retrieval_model[1](**query_inputs)
|
1045 |
+
key_outputs = self.retrieval_model[1](**key_inputs)
|
1046 |
+
# CLS pooling
|
1047 |
+
query_embeddings = query_outputs.last_hidden_state[:, 0]
|
1048 |
+
key_embeddings = key_outputs.last_hidden_state[:, 0]
|
1049 |
+
# Normalize
|
1050 |
+
query_embeddings = torch.nn.functional.normalize(
|
1051 |
+
query_embeddings, p=2, dim=1
|
1052 |
+
)
|
1053 |
+
key_embeddings = torch.nn.functional.normalize(
|
1054 |
+
key_embeddings, p=2, dim=1
|
1055 |
+
)
|
1056 |
+
similarity = query_embeddings @ key_embeddings.T
|
1057 |
+
idx = [(ii, 0) for ii in np.argsort(-similarity[0].cpu())]
|
1058 |
+
return idx
|
1059 |
+
|
1060 |
+
def get_distance_jinza(corpus, query):
|
1061 |
+
from numpy.linalg import norm
|
1062 |
+
|
1063 |
+
from transformers import AutoModel
|
1064 |
+
|
1065 |
+
def cos_sim(a, b):
|
1066 |
+
return (a @ b.T) / (norm(a) * norm(b))
|
1067 |
+
|
1068 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
1069 |
+
model = (
|
1070 |
+
AutoModel.from_pretrained(
|
1071 |
+
"jinaai/jina-embeddings-v2-base-en", trust_remote_code=True
|
1072 |
+
)
|
1073 |
+
.eval()
|
1074 |
+
.to(self.device)
|
1075 |
+
)
|
1076 |
+
self.retrieval_model = model
|
1077 |
+
self.retrieval_model_name = rank_method
|
1078 |
+
|
1079 |
+
doc_embeds = self.retrieval_model.encode(corpus)
|
1080 |
+
query = self.retrieval_model.encode(query)
|
1081 |
+
doc_scores = cos_sim(doc_embeds, query)
|
1082 |
+
idx = [(ii, 0) for ii in np.argsort(-doc_scores)]
|
1083 |
+
return idx
|
1084 |
+
|
1085 |
+
def get_distance_voyageai(corpus, query):
|
1086 |
+
import voyageai
|
1087 |
+
from sentence_transformers import util
|
1088 |
+
|
1089 |
+
voyageai.api_key = self.open_api_config.get("voyageai_api_key", "")
|
1090 |
+
|
1091 |
+
def get_embed(text):
|
1092 |
+
return voyageai.get_embedding(text, model="voyage-01")
|
1093 |
+
|
1094 |
+
doc_embeds = [get_embed(i) for i in corpus]
|
1095 |
+
query = get_embed(query)
|
1096 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
1097 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
1098 |
+
return idx
|
1099 |
+
|
1100 |
+
def get_distance_cohere(corpus, query):
|
1101 |
+
import cohere
|
1102 |
+
|
1103 |
+
api_key = self.open_api_config.get("cohere_api_key", "")
|
1104 |
+
co = cohere.Client(api_key)
|
1105 |
+
results = co.rerank(
|
1106 |
+
model="rerank-english-v2.0", query=query, documents=corpus, top_n=20
|
1107 |
+
)
|
1108 |
+
c_map = {jj: ii for ii, jj in enumerate(corpus)}
|
1109 |
+
doc_rank = [c_map[ii.document["text"]] for ii in results]
|
1110 |
+
idx = [(ii, 0) for ii in doc_rank]
|
1111 |
+
return idx
|
1112 |
+
|
1113 |
+
def get_distance_longllmlingua(corpus, query):
|
1114 |
+
context_ppl = [
|
1115 |
+
self.get_condition_ppl(
|
1116 |
+
d,
|
1117 |
+
query
|
1118 |
+
+ " We can get the answer to this question in the given documents.",
|
1119 |
+
condition_in_question,
|
1120 |
+
)
|
1121 |
+
- dl * 2 / 250 * 0
|
1122 |
+
for d, dl in zip(corpus, context_tokens_length)
|
1123 |
+
]
|
1124 |
+
sort_direct = -1 if condition_in_question == "none" else 1
|
1125 |
+
ys = sorted(enumerate(context_ppl), key=lambda x: sort_direct * x[1])
|
1126 |
+
return ys
|
1127 |
+
|
1128 |
+
method = None
|
1129 |
+
if rank_method == "bm25":
|
1130 |
+
method = get_distance_bm25
|
1131 |
+
elif rank_method == "gzip":
|
1132 |
+
method = get_distance_gzip
|
1133 |
+
elif rank_method == "sentbert":
|
1134 |
+
method = get_distance_sentbert
|
1135 |
+
elif rank_method == "openai":
|
1136 |
+
method = get_distance_openai
|
1137 |
+
elif rank_method in ["longllmlingua", "llmlingua"]:
|
1138 |
+
method = get_distance_longllmlingua
|
1139 |
+
elif rank_method == "bge":
|
1140 |
+
method = get_distance_sentbert_bge
|
1141 |
+
elif rank_method == "bge_reranker":
|
1142 |
+
method = get_distance_bge_ranker
|
1143 |
+
elif rank_method == "bge_llmembedder":
|
1144 |
+
method = get_distance_bge_llmembedder
|
1145 |
+
elif rank_method == "jinza":
|
1146 |
+
method = get_distance_jinza
|
1147 |
+
elif rank_method == "voyageai":
|
1148 |
+
method = get_distance_voyageai
|
1149 |
+
elif rank_method == "cohere":
|
1150 |
+
method = get_distance_cohere
|
1151 |
+
return method(context, question)
|
1152 |
+
|
longlingua_compressor.py
ADDED
@@ -0,0 +1,1150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llmlingua import PromptCompressor
|
2 |
+
import bisect
|
3 |
+
from collections import defaultdict
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
import nltk
|
10 |
+
import tiktoken
|
11 |
+
import re
|
12 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
13 |
+
|
14 |
+
from abs_compressor import AbstractCompressor
|
15 |
+
|
16 |
+
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
|
17 |
+
|
18 |
+
class LongLLMLinguaCompressor(AbstractCompressor):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
model_name: str = "meta-llama/Llama-2-7b-chat-hf",
|
22 |
+
device_map: str = "cuda",
|
23 |
+
use_auth_token: bool = False,
|
24 |
+
open_api_config: dict = {},
|
25 |
+
):
|
26 |
+
self.load_model(model_name, device_map, use_auth_token)
|
27 |
+
self.retrieval_model = None
|
28 |
+
self.retrieval_model_name = None
|
29 |
+
self.open_api_config = open_api_config
|
30 |
+
self.cache_bos_num = 10
|
31 |
+
|
32 |
+
def load_model(
|
33 |
+
self, model_name: str, device_map: str = "cuda", use_auth_token: bool = False
|
34 |
+
):
|
35 |
+
config = AutoConfig.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
37 |
+
tokenizer.padding_side = "left"
|
38 |
+
tokenizer.pad_token_id = (
|
39 |
+
config.pad_token_id if config.pad_token_id else tokenizer.eos_token_id
|
40 |
+
)
|
41 |
+
self.device = (
|
42 |
+
device_map if any(key in device_map for key in ["cuda", "cpu"]) else "cuda"
|
43 |
+
)
|
44 |
+
if "cuda" in device_map or "cpu" in device_map:
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
46 |
+
model_name,
|
47 |
+
torch_dtype="auto" if device_map == "cuda" else torch.float32,
|
48 |
+
config=config,
|
49 |
+
ignore_mismatched_sizes=True,
|
50 |
+
trust_remote_code=True,
|
51 |
+
token="Your Token here"
|
52 |
+
).to(device_map)
|
53 |
+
else:
|
54 |
+
model = AutoModelForCausalLM.from_pretrained(
|
55 |
+
model_name,
|
56 |
+
device_map=device_map,
|
57 |
+
torch_dtype="auto",
|
58 |
+
pad_token_id=tokenizer.pad_token_id,
|
59 |
+
offload_folder="/tmp/offload",
|
60 |
+
offload_state_dict=True,
|
61 |
+
cache_dir="/tmp/cache",
|
62 |
+
use_auth_token=use_auth_token,
|
63 |
+
trust_remote_code=True,
|
64 |
+
token="Your Token here"
|
65 |
+
)
|
66 |
+
self.tokenizer = tokenizer
|
67 |
+
self.model = model
|
68 |
+
self.context_idxs = []
|
69 |
+
self.max_position_embeddings = config.max_position_embeddings
|
70 |
+
|
71 |
+
def get_ppl(
|
72 |
+
self,
|
73 |
+
text: str,
|
74 |
+
granularity: str = "sentence",
|
75 |
+
input_ids=None,
|
76 |
+
attention_mask=None,
|
77 |
+
past_key_values=None,
|
78 |
+
return_kv=False,
|
79 |
+
end=None,
|
80 |
+
condition_mode: str = "none",
|
81 |
+
condition_pos_id: int = 0,
|
82 |
+
):
|
83 |
+
if input_ids is None:
|
84 |
+
tokenized_text = self.tokenizer(text, return_tensors="pt")
|
85 |
+
input_ids = tokenized_text["input_ids"].to(self.device)
|
86 |
+
attention_mask = tokenized_text["attention_mask"].to(self.device)
|
87 |
+
if past_key_values is not None:
|
88 |
+
past_length = past_key_values[0][0].shape[2]
|
89 |
+
else:
|
90 |
+
past_length = 0
|
91 |
+
if end is None:
|
92 |
+
end = input_ids.shape[1]
|
93 |
+
end = min(end, past_length + self.max_position_embeddings)
|
94 |
+
with torch.no_grad():
|
95 |
+
response = self.model(
|
96 |
+
input_ids[:, past_length:end],
|
97 |
+
attention_mask=attention_mask[:, :end],
|
98 |
+
past_key_values=past_key_values,
|
99 |
+
use_cache=True,
|
100 |
+
)
|
101 |
+
past_key_values = response.past_key_values
|
102 |
+
|
103 |
+
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
|
104 |
+
shift_logits = response.logits[..., :-1, :].contiguous()
|
105 |
+
shift_labels = input_ids[..., past_length + 1 : end].contiguous()
|
106 |
+
# Flatten the tokens
|
107 |
+
active = (attention_mask[:, past_length:end] == 1)[..., :-1].view(-1)
|
108 |
+
active_logits = shift_logits.view(-1, shift_logits.size(-1))[active]
|
109 |
+
active_labels = shift_labels.view(-1)[active]
|
110 |
+
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
|
111 |
+
loss = loss_fct(active_logits, active_labels)
|
112 |
+
if condition_mode == "before":
|
113 |
+
loss = loss[:condition_pos_id]
|
114 |
+
elif condition_mode == "after":
|
115 |
+
loss = loss[condition_pos_id:]
|
116 |
+
res = loss.mean() if granularity == "sentence" else loss
|
117 |
+
return (res, past_key_values) if return_kv else res
|
118 |
+
|
119 |
+
def __call__(self, *args, **kwargs):
|
120 |
+
return self.compress(*args, **kwargs)
|
121 |
+
|
122 |
+
def compress(
|
123 |
+
self,
|
124 |
+
context: List[str],
|
125 |
+
instruction: str = "",
|
126 |
+
question: str = " ",
|
127 |
+
ratio: float = 0.5,
|
128 |
+
target_token: float = -1,
|
129 |
+
iterative_size: int = 200,
|
130 |
+
force_context_ids: List[int] = None,
|
131 |
+
force_context_number: int = None,
|
132 |
+
use_sentence_level_filter: bool = False,
|
133 |
+
use_context_level_filter: bool = True,
|
134 |
+
use_token_level_filter: bool = True,
|
135 |
+
keep_split: bool = False,
|
136 |
+
keep_first_sentence: int = 0,
|
137 |
+
keep_last_sentence: int = 0,
|
138 |
+
keep_sentence_number: int = 0,
|
139 |
+
high_priority_bonus: int = 100,
|
140 |
+
context_budget: str = "+100",
|
141 |
+
token_budget_ratio: float = 1.4,
|
142 |
+
condition_in_question: str = "none",
|
143 |
+
reorder_context: str = "original",
|
144 |
+
dynamic_context_compression_ratio: float = 0.0,
|
145 |
+
condition_compare: bool = False,
|
146 |
+
add_instruction: bool = False,
|
147 |
+
rank_method: str = "longllmlingua",
|
148 |
+
concate_question: bool = True,
|
149 |
+
):
|
150 |
+
if isinstance(context, str):
|
151 |
+
context = [context]
|
152 |
+
assert not (
|
153 |
+
rank_method == "longllmlingua" and not question
|
154 |
+
), "In the LongLLMLingua, it is necessary to set a question."
|
155 |
+
if condition_compare and "_condition" not in condition_in_question:
|
156 |
+
condition_in_question += "_condition"
|
157 |
+
if rank_method == "longllmlingua":
|
158 |
+
if condition_in_question == "none":
|
159 |
+
condition_in_question = "after"
|
160 |
+
elif rank_method == "llmlingua":
|
161 |
+
condition_in_question = (
|
162 |
+
"none"
|
163 |
+
if "_condition" not in condition_in_question
|
164 |
+
else "none_condition"
|
165 |
+
)
|
166 |
+
origin_tokens = len(
|
167 |
+
encoding.encode("\n\n".join([instruction] + context + [question]).strip())
|
168 |
+
)
|
169 |
+
context_tokens_length = [self.get_token_length(c) for c in context]
|
170 |
+
instruction_tokens_length, question_tokens_length = self.get_token_length(
|
171 |
+
instruction
|
172 |
+
), self.get_token_length(question)
|
173 |
+
if target_token == -1:
|
174 |
+
target_token = (
|
175 |
+
(
|
176 |
+
instruction_tokens_length
|
177 |
+
+ question_tokens_length
|
178 |
+
+ sum(context_tokens_length)
|
179 |
+
)
|
180 |
+
* (1 - ratio)
|
181 |
+
- instruction_tokens_length
|
182 |
+
- (question_tokens_length if concate_question else 0)
|
183 |
+
)
|
184 |
+
condition_flag = "_condition" in condition_in_question
|
185 |
+
condition_in_question = condition_in_question.replace("_condition", "")
|
186 |
+
|
187 |
+
if len(context) > 1 and use_context_level_filter:
|
188 |
+
context, dynamic_ratio = self.control_context_budget(
|
189 |
+
context,
|
190 |
+
context_tokens_length,
|
191 |
+
target_token,
|
192 |
+
force_context_ids,
|
193 |
+
force_context_number,
|
194 |
+
question,
|
195 |
+
condition_in_question,
|
196 |
+
reorder_context=reorder_context,
|
197 |
+
dynamic_context_compression_ratio=dynamic_context_compression_ratio,
|
198 |
+
rank_method=rank_method,
|
199 |
+
context_budget=context_budget,
|
200 |
+
)
|
201 |
+
else:
|
202 |
+
dynamic_ratio = [0.0] * len(context)
|
203 |
+
|
204 |
+
if use_sentence_level_filter:
|
205 |
+
context = self.control_sentence_budget(
|
206 |
+
context,
|
207 |
+
target_token,
|
208 |
+
keep_first_sentence=keep_first_sentence,
|
209 |
+
keep_last_sentence=keep_last_sentence,
|
210 |
+
keep_sentence_number=keep_sentence_number,
|
211 |
+
high_priority_bonus=high_priority_bonus,
|
212 |
+
token_budget_ratio=token_budget_ratio,
|
213 |
+
question=question,
|
214 |
+
condition_in_question=condition_in_question,
|
215 |
+
rank_method=rank_method,
|
216 |
+
)
|
217 |
+
|
218 |
+
if condition_flag:
|
219 |
+
if add_instruction:
|
220 |
+
context = [question + "\n\n" + instruction] + context
|
221 |
+
start = self.get_token_length(question + "\n\n" + instruction) + 2
|
222 |
+
else:
|
223 |
+
context = [question] + context
|
224 |
+
start = self.get_token_length(question) + 2
|
225 |
+
else:
|
226 |
+
start = 0
|
227 |
+
|
228 |
+
if use_token_level_filter:
|
229 |
+
context = self.iterative_compress_prompt(
|
230 |
+
context,
|
231 |
+
target_token,
|
232 |
+
iterative_size=iterative_size,
|
233 |
+
keep_split=keep_split,
|
234 |
+
start=start,
|
235 |
+
dynamic_ratio=dynamic_ratio,
|
236 |
+
condition_compare=condition_compare,
|
237 |
+
)
|
238 |
+
compressed_prompt = (
|
239 |
+
self.tokenizer.batch_decode(context[0])[0]
|
240 |
+
.replace("<s> ", "")
|
241 |
+
.replace("<s>", "")
|
242 |
+
)
|
243 |
+
else:
|
244 |
+
compressed_prompt = "\n\n".join(context)
|
245 |
+
|
246 |
+
if instruction:
|
247 |
+
compressed_prompt = instruction + "\n\n" + compressed_prompt
|
248 |
+
if question and concate_question:
|
249 |
+
compressed_prompt = compressed_prompt + "\n\n" + question
|
250 |
+
|
251 |
+
compressed_tokens = len(encoding.encode(compressed_prompt))
|
252 |
+
saving = (origin_tokens - compressed_tokens) * 0.06 / 1000
|
253 |
+
return {
|
254 |
+
"compressed_prompt": compressed_prompt,
|
255 |
+
"origin_tokens": origin_tokens,
|
256 |
+
"compressed_tokens": compressed_tokens,
|
257 |
+
# "ratio": f"{origin_tokens/compressed_tokens:.1f}x",
|
258 |
+
"ratio": compressed_tokens / origin_tokens,
|
259 |
+
# "saving": f", Saving ${saving:.1f} in GPT-4.",
|
260 |
+
}
|
261 |
+
|
262 |
+
def get_token_length(self, text: str, add_special_tokens: bool = True):
|
263 |
+
return len(
|
264 |
+
self.tokenizer(text, add_special_tokens=add_special_tokens).input_ids
|
265 |
+
)
|
266 |
+
|
267 |
+
def get_condition_ppl(
|
268 |
+
self,
|
269 |
+
text: str,
|
270 |
+
question: str,
|
271 |
+
condition_in_question: str = "none",
|
272 |
+
granularity: str = "sentence",
|
273 |
+
):
|
274 |
+
if condition_in_question == "none":
|
275 |
+
return self.get_ppl(text, granularity=granularity)
|
276 |
+
elif condition_in_question == "before":
|
277 |
+
return self.get_ppl(
|
278 |
+
question + text,
|
279 |
+
granularity=granularity,
|
280 |
+
condition_mode="after",
|
281 |
+
condition_pos_id=self.get_token_length(question) - 1,
|
282 |
+
)
|
283 |
+
elif condition_in_question == "after":
|
284 |
+
return self.get_ppl(
|
285 |
+
text + question,
|
286 |
+
granularity=granularity,
|
287 |
+
condition_mode="after",
|
288 |
+
condition_pos_id=self.get_token_length(text) - 1,
|
289 |
+
)
|
290 |
+
|
291 |
+
def get_dynamic_compression_ratio(
|
292 |
+
self,
|
293 |
+
context: list,
|
294 |
+
target_token: float,
|
295 |
+
iterative_size: int,
|
296 |
+
dynamic_ratio: list,
|
297 |
+
start: int,
|
298 |
+
):
|
299 |
+
def get_ratio(base: float, delta: float):
|
300 |
+
return max(min(1, base + delta), 0)
|
301 |
+
|
302 |
+
context_length = [self.get_token_length(ii, False) + 2 for ii in context]
|
303 |
+
if start:
|
304 |
+
context_length = context_length[1:]
|
305 |
+
tau = target_token / (sum(context_length) + 1)
|
306 |
+
res, idx, last, last_target = [], 0, 1, []
|
307 |
+
while idx < len(context_length):
|
308 |
+
if last + context_length[idx] >= iterative_size:
|
309 |
+
last_target.append(
|
310 |
+
(iterative_size - last, get_ratio(tau, dynamic_ratio[idx]))
|
311 |
+
)
|
312 |
+
res.append(last_target)
|
313 |
+
last = last + context_length[idx] - iterative_size
|
314 |
+
if last > iterative_size:
|
315 |
+
k = last // iterative_size
|
316 |
+
res.extend(
|
317 |
+
[[(iterative_size, get_ratio(tau, dynamic_ratio[idx]))]] * k
|
318 |
+
)
|
319 |
+
last -= k * iterative_size
|
320 |
+
|
321 |
+
last_target = (
|
322 |
+
[(last, get_ratio(tau, dynamic_ratio[idx]))] if last else []
|
323 |
+
)
|
324 |
+
else:
|
325 |
+
last += context_length[idx]
|
326 |
+
last_target.append(
|
327 |
+
(context_length[idx], get_ratio(tau, dynamic_ratio[idx]))
|
328 |
+
)
|
329 |
+
idx += 1
|
330 |
+
if last_target:
|
331 |
+
res.append(last_target)
|
332 |
+
return res
|
333 |
+
|
334 |
+
def control_context_budget(
|
335 |
+
self,
|
336 |
+
context: List[str],
|
337 |
+
context_tokens_length: List[int],
|
338 |
+
target_token: float,
|
339 |
+
force_context_ids: List[int] = None,
|
340 |
+
force_context_number: int = None,
|
341 |
+
question: str = "",
|
342 |
+
condition_in_question: str = "none",
|
343 |
+
reorder_context: str = "original",
|
344 |
+
dynamic_context_compression_ratio: float = 0.0,
|
345 |
+
rank_method: str = "longllmlingua",
|
346 |
+
context_budget: str = "+100",
|
347 |
+
):
|
348 |
+
if force_context_ids is not None:
|
349 |
+
return [context[ii] for ii in force_context_ids]
|
350 |
+
demostrations_sort = self.get_rank_results(
|
351 |
+
context,
|
352 |
+
question,
|
353 |
+
rank_method,
|
354 |
+
condition_in_question,
|
355 |
+
context_tokens_length,
|
356 |
+
)
|
357 |
+
|
358 |
+
if target_token < 0:
|
359 |
+
target_token = 100
|
360 |
+
target_token = eval("target_token" + context_budget)
|
361 |
+
res = []
|
362 |
+
used = force_context_ids if force_context_ids is not None else []
|
363 |
+
|
364 |
+
self.context_idxs.append([x for idx, (x, _) in enumerate(demostrations_sort)])
|
365 |
+
for idx, _ in demostrations_sort:
|
366 |
+
if idx >= len(context_tokens_length):
|
367 |
+
continue
|
368 |
+
target_token -= context_tokens_length[idx]
|
369 |
+
if idx not in used:
|
370 |
+
used.append(idx)
|
371 |
+
if target_token < 0 or (
|
372 |
+
force_context_number is not None and len(res) >= force_context_number
|
373 |
+
):
|
374 |
+
break
|
375 |
+
original_used = used
|
376 |
+
if reorder_context == "original":
|
377 |
+
used = sorted(used)
|
378 |
+
elif reorder_context == "two_stage":
|
379 |
+
l, r = [_ for idx, _ in enumerate(used) if idx % 2 == 0], [
|
380 |
+
_ for idx, _ in enumerate(used) if idx % 2 == 1
|
381 |
+
]
|
382 |
+
used = l + r[::-1]
|
383 |
+
|
384 |
+
if dynamic_context_compression_ratio > 0:
|
385 |
+
N = len(used)
|
386 |
+
if condition_in_question:
|
387 |
+
rank = [
|
388 |
+
i
|
389 |
+
for i, _ in self.get_rank_results(
|
390 |
+
context,
|
391 |
+
question,
|
392 |
+
"longllmlingua",
|
393 |
+
"after",
|
394 |
+
context_tokens_length,
|
395 |
+
)
|
396 |
+
]
|
397 |
+
used = sorted(used, key=lambda x: rank.index(x))
|
398 |
+
dynamic_ratio = [
|
399 |
+
i * (abs(dynamic_context_compression_ratio) / (N - 1)) if N > 1 else 0
|
400 |
+
for i in range(-(N - 1), N, 2)
|
401 |
+
][::-1]
|
402 |
+
dynamic_ratio_map = {i: j for i, j in zip(original_used, dynamic_ratio)}
|
403 |
+
dynamic_ratio = [dynamic_ratio_map[i] for i in used]
|
404 |
+
else:
|
405 |
+
dynamic_ratio = [0.0] * len(used)
|
406 |
+
|
407 |
+
res = [context[idx] for idx in used if idx < len(context)]
|
408 |
+
return res, dynamic_ratio
|
409 |
+
|
410 |
+
def control_sentence_budget(
|
411 |
+
self,
|
412 |
+
context: List[str],
|
413 |
+
target_token: float,
|
414 |
+
keep_first_sentence: int = 0,
|
415 |
+
keep_last_sentence: int = 0,
|
416 |
+
keep_sentence_number: int = 0,
|
417 |
+
high_priority_bonus: int = 100,
|
418 |
+
token_budget_ratio: float = 1.4,
|
419 |
+
question: str = "",
|
420 |
+
condition_in_question: str = "none",
|
421 |
+
rank_method: str = "longllmlingua",
|
422 |
+
):
|
423 |
+
def keep_sentence(dem_idx: int, sent_keep: int):
|
424 |
+
idxs = sorted(dem_g[dem_idx], key=lambda x: sentence_ppl[x])[:sent_keep]
|
425 |
+
for idx in idxs:
|
426 |
+
sentence_ppl[idx] += high_priority_bonus
|
427 |
+
|
428 |
+
sentences = [nltk.sent_tokenize(c) for c in context]
|
429 |
+
dem_g, s2de, idx = defaultdict(set), defaultdict(int), 0
|
430 |
+
for idx_d, s in enumerate(sentences):
|
431 |
+
for _ in s:
|
432 |
+
dem_g[idx_d].add(idx)
|
433 |
+
s2de[idx] = idx_d
|
434 |
+
idx += 1
|
435 |
+
|
436 |
+
context_sentences = [s for ii in sentences for s in ii]
|
437 |
+
sentence_tokens_length = [
|
438 |
+
self.get_token_length(sentence) for sentence in context_sentences
|
439 |
+
]
|
440 |
+
N = len(context_sentences)
|
441 |
+
flags = list(range(len(context_sentences)))
|
442 |
+
if len(sentence_tokens_length) == 1:
|
443 |
+
return context
|
444 |
+
if rank_method == "longllmlingua":
|
445 |
+
sentence_ppl = [
|
446 |
+
self.get_condition_ppl(sentence, question, condition_in_question)
|
447 |
+
.cpu()
|
448 |
+
.numpy()
|
449 |
+
.item()
|
450 |
+
for sentence in context_sentences
|
451 |
+
]
|
452 |
+
if keep_first_sentence:
|
453 |
+
sentence_ppl[:keep_first_sentence] = [
|
454 |
+
ii + high_priority_bonus
|
455 |
+
for ii in sentence_ppl[:keep_first_sentence]
|
456 |
+
]
|
457 |
+
if keep_last_sentence:
|
458 |
+
sentence_ppl[-keep_last_sentence:] = [
|
459 |
+
ii + high_priority_bonus
|
460 |
+
for ii in sentence_ppl[-keep_last_sentence:]
|
461 |
+
]
|
462 |
+
if keep_sentence_number:
|
463 |
+
for dem_idx in range(len(sentences)):
|
464 |
+
keep_sentence(dem_idx, keep_sentence_number)
|
465 |
+
sort_direct = -1 if condition_in_question == "none" else 1
|
466 |
+
sent_sort = sorted(
|
467 |
+
enumerate(sentence_ppl), key=lambda x: sort_direct * x[1]
|
468 |
+
)
|
469 |
+
else:
|
470 |
+
sent_sort = self.get_rank_results(
|
471 |
+
context_sentences,
|
472 |
+
question,
|
473 |
+
rank_method,
|
474 |
+
condition_in_question,
|
475 |
+
[0] * len(context_sentences),
|
476 |
+
)
|
477 |
+
|
478 |
+
sentence_flags = [False] * N
|
479 |
+
if target_token < 0:
|
480 |
+
target_token = 100
|
481 |
+
target_token *= token_budget_ratio
|
482 |
+
res = []
|
483 |
+
for idx, _ in sent_sort:
|
484 |
+
idx = flags[idx]
|
485 |
+
target_token -= sentence_tokens_length[idx]
|
486 |
+
sentence_flags[idx] = True
|
487 |
+
if target_token < 0:
|
488 |
+
break
|
489 |
+
idx = 0
|
490 |
+
res = []
|
491 |
+
for s in sentences:
|
492 |
+
tmp = [jj for ii, jj in enumerate(s) if sentence_flags[idx + ii]]
|
493 |
+
res.append("\n".join(tmp))
|
494 |
+
idx += len(s)
|
495 |
+
return res
|
496 |
+
|
497 |
+
def get_compressed_input(
|
498 |
+
self,
|
499 |
+
loss,
|
500 |
+
input_ids,
|
501 |
+
attention_mask,
|
502 |
+
end=200,
|
503 |
+
iterative_size=200,
|
504 |
+
threshold=0.5,
|
505 |
+
keep_flag=None,
|
506 |
+
split_token_id: int = 13,
|
507 |
+
start: int = 0,
|
508 |
+
self_loss=None,
|
509 |
+
self_input_ids=None,
|
510 |
+
self_attention_mask=None,
|
511 |
+
):
|
512 |
+
if self_loss is not None:
|
513 |
+
need_idx = torch.concat(
|
514 |
+
[
|
515 |
+
loss[:start] > 0,
|
516 |
+
self_loss[: loss[start:].shape[0]] - loss[start:] > threshold,
|
517 |
+
loss[:1] > 0,
|
518 |
+
]
|
519 |
+
)
|
520 |
+
else:
|
521 |
+
need_idx = torch.concat([loss > threshold, loss[:1] > 0])
|
522 |
+
need_idx[end:] = 1
|
523 |
+
need_idx[: end - iterative_size] = 1
|
524 |
+
loss = loss[need_idx[:-1]]
|
525 |
+
if self_loss is not None:
|
526 |
+
if need_idx.shape[0] < self_loss.shape[0] + start + 1:
|
527 |
+
need_idx = torch.cat(
|
528 |
+
[
|
529 |
+
need_idx,
|
530 |
+
torch.ones(
|
531 |
+
self_loss.shape[0] - need_idx.shape[0] + start + 1,
|
532 |
+
dtype=torch.bool,
|
533 |
+
).to(need_idx.device),
|
534 |
+
]
|
535 |
+
)
|
536 |
+
self_loss = self_loss[need_idx[start:-1]]
|
537 |
+
|
538 |
+
if need_idx.shape[0] < input_ids.shape[1]:
|
539 |
+
need_idx = torch.cat(
|
540 |
+
[
|
541 |
+
need_idx,
|
542 |
+
torch.ones(
|
543 |
+
input_ids.shape[1] - need_idx.shape[0], dtype=torch.bool
|
544 |
+
).to(need_idx.device),
|
545 |
+
]
|
546 |
+
)
|
547 |
+
elif need_idx.shape[0] > input_ids.shape[1]:
|
548 |
+
need_idx = need_idx[: input_ids.shape[1]]
|
549 |
+
|
550 |
+
if keep_flag is not None:
|
551 |
+
need_idx[keep_flag == 1] = 1
|
552 |
+
last = -1
|
553 |
+
if keep_flag is not None:
|
554 |
+
for ii in range(end - iterative_size, end):
|
555 |
+
if need_idx[ii] != 1:
|
556 |
+
continue
|
557 |
+
now = input_ids[0][ii].detach().cpu().item()
|
558 |
+
if (
|
559 |
+
now == split_token_id
|
560 |
+
and last == split_token_id
|
561 |
+
and keep_flag[ii].detach().cpu().item() == 0
|
562 |
+
):
|
563 |
+
need_idx[ii] = 0
|
564 |
+
else:
|
565 |
+
last = now
|
566 |
+
compressed_input_ids = input_ids[attention_mask == 1][need_idx].unsqueeze(0)
|
567 |
+
compressed_attention_mask = attention_mask[attention_mask == 1][
|
568 |
+
need_idx
|
569 |
+
].unsqueeze(0)
|
570 |
+
|
571 |
+
if self_loss is not None:
|
572 |
+
self_compressed_input_ids = self_input_ids[self_attention_mask == 1][
|
573 |
+
need_idx[start:]
|
574 |
+
].unsqueeze(0)
|
575 |
+
self_compressed_attention_mask = self_attention_mask[
|
576 |
+
self_attention_mask == 1
|
577 |
+
][need_idx[start:]].unsqueeze(0)
|
578 |
+
else:
|
579 |
+
self_compressed_input_ids, self_compressed_attention_mask = None, None
|
580 |
+
if keep_flag is not None:
|
581 |
+
if len(keep_flag) > len(need_idx):
|
582 |
+
keep_flag = torch.cat(
|
583 |
+
[
|
584 |
+
keep_flag[:start],
|
585 |
+
keep_flag[start : len(need_idx) + start][need_idx],
|
586 |
+
keep_flag[start + len(need_idx) :],
|
587 |
+
]
|
588 |
+
)
|
589 |
+
else:
|
590 |
+
keep_flag = keep_flag[need_idx]
|
591 |
+
end -= (need_idx[:end] == 0).sum()
|
592 |
+
return (
|
593 |
+
compressed_input_ids,
|
594 |
+
compressed_attention_mask,
|
595 |
+
keep_flag,
|
596 |
+
end,
|
597 |
+
loss,
|
598 |
+
self_loss,
|
599 |
+
self_compressed_input_ids,
|
600 |
+
self_compressed_attention_mask,
|
601 |
+
)
|
602 |
+
|
603 |
+
def get_estimate_threshold_base_distribution(
|
604 |
+
self, ppl, ratio: float, condition_flag: bool = False
|
605 |
+
):
|
606 |
+
ppl = ppl[ppl != 10000]
|
607 |
+
target_token = max(0, min(len(ppl) - 1, int(len(ppl) * ratio) - 1))
|
608 |
+
return (
|
609 |
+
ppl.sort(descending=not condition_flag)
|
610 |
+
.values[target_token]
|
611 |
+
.detach()
|
612 |
+
.cpu()
|
613 |
+
.item()
|
614 |
+
)
|
615 |
+
|
616 |
+
def iterative_compress_prompt(
|
617 |
+
self,
|
618 |
+
context: List[str],
|
619 |
+
target_token: float,
|
620 |
+
iterative_size: int = 200,
|
621 |
+
keep_split: bool = False,
|
622 |
+
split_token_id: int = 13,
|
623 |
+
start: int = 0,
|
624 |
+
dynamic_ratio: list = None,
|
625 |
+
condition_compare: bool = False,
|
626 |
+
):
|
627 |
+
iterative_ratios = self.get_dynamic_compression_ratio(
|
628 |
+
context, target_token, iterative_size, dynamic_ratio, start
|
629 |
+
)
|
630 |
+
context = "\n\n".join(context)
|
631 |
+
tokenized_text = self.tokenizer(context, return_tensors="pt")
|
632 |
+
input_ids = tokenized_text["input_ids"].to(self.device)
|
633 |
+
attention_mask = tokenized_text["attention_mask"].to(self.device)
|
634 |
+
|
635 |
+
N = (attention_mask == 1).sum()
|
636 |
+
compressed_input_ids, compressed_attention_mask = input_ids, attention_mask
|
637 |
+
if condition_compare:
|
638 |
+
self_input_ids, self_attention_mask = (
|
639 |
+
input_ids[:, start:],
|
640 |
+
attention_mask[:, start:],
|
641 |
+
)
|
642 |
+
self_compressed_input_ids, self_compressed_attention_mask = (
|
643 |
+
self_input_ids,
|
644 |
+
self_attention_mask,
|
645 |
+
)
|
646 |
+
|
647 |
+
end = min(iterative_size + start, compressed_input_ids.shape[1])
|
648 |
+
threshold, keep_flag = None, None
|
649 |
+
if keep_split:
|
650 |
+
input_ids_numpy = input_ids.cpu().detach().numpy()[0]
|
651 |
+
N = len(input_ids_numpy)
|
652 |
+
keep_flag = [
|
653 |
+
int(
|
654 |
+
(
|
655 |
+
ii > 0
|
656 |
+
and input_ids_numpy[ii] == split_token_id
|
657 |
+
and input_ids_numpy[ii - 1] == split_token_id
|
658 |
+
)
|
659 |
+
or (
|
660 |
+
ii < N - 1
|
661 |
+
and input_ids_numpy[ii] == split_token_id
|
662 |
+
and input_ids_numpy[ii + 1] == split_token_id
|
663 |
+
)
|
664 |
+
)
|
665 |
+
for ii in range(N)
|
666 |
+
]
|
667 |
+
keep_flag = torch.tensor(keep_flag).to(self.device)
|
668 |
+
past_key_values, past_loss, ready_end = None, None, 0
|
669 |
+
self_past_key_values, self_past_loss, self_ready_end = None, None, 0
|
670 |
+
pop_compressed_input_ids, pop_self_compressed_input_ids = None, None
|
671 |
+
idx = 0
|
672 |
+
while end <= compressed_input_ids.shape[1]:
|
673 |
+
if end > self.max_position_embeddings and past_key_values is not None:
|
674 |
+
# KV-Cache Compression
|
675 |
+
e, s = end - self.max_position_embeddings, self.cache_bos_num
|
676 |
+
if pop_compressed_input_ids is None:
|
677 |
+
pop_compressed_input_ids = compressed_input_ids[:, :e]
|
678 |
+
else:
|
679 |
+
pop_compressed_input_ids = torch.cat(
|
680 |
+
[pop_compressed_input_ids, compressed_input_ids[:, :e]], dim=-1
|
681 |
+
)
|
682 |
+
compressed_input_ids = compressed_input_ids[:, e:]
|
683 |
+
compressed_attention_mask = compressed_attention_mask[:, e:]
|
684 |
+
past_key_values = [
|
685 |
+
[
|
686 |
+
torch.cat([k[..., :s, :], k[..., s + e :, :]], dim=-2),
|
687 |
+
torch.cat([v[..., :s, :], v[..., s + e :, :]], dim=-2),
|
688 |
+
]
|
689 |
+
for k, v in past_key_values
|
690 |
+
]
|
691 |
+
end, ready_end = end - e, ready_end - e
|
692 |
+
if condition_compare:
|
693 |
+
self_ready_end -= e
|
694 |
+
if pop_self_compressed_input_ids is None:
|
695 |
+
pop_self_compressed_input_ids = self_compressed_input_ids[:, :e]
|
696 |
+
else:
|
697 |
+
pop_self_compressed_input_ids = torch.cat(
|
698 |
+
[
|
699 |
+
pop_self_compressed_input_ids,
|
700 |
+
self_compressed_input_ids[:, :e],
|
701 |
+
],
|
702 |
+
dim=-1,
|
703 |
+
)
|
704 |
+
self_compressed_input_ids = self_compressed_input_ids[:, e:]
|
705 |
+
self_compressed_attention_mask = self_compressed_attention_mask[
|
706 |
+
:, e:
|
707 |
+
]
|
708 |
+
self_past_key_values = [
|
709 |
+
[
|
710 |
+
torch.cat([k[..., :s, :], k[..., s + e :, :]], dim=-2),
|
711 |
+
torch.cat([v[..., :s, :], v[..., s + e :, :]], dim=-2),
|
712 |
+
]
|
713 |
+
for k, v in self_past_key_values
|
714 |
+
]
|
715 |
+
|
716 |
+
loss, past_key_values = self.get_ppl(
|
717 |
+
"",
|
718 |
+
"token",
|
719 |
+
compressed_input_ids,
|
720 |
+
compressed_attention_mask,
|
721 |
+
past_key_values=past_key_values,
|
722 |
+
return_kv=True,
|
723 |
+
end=end if idx else None,
|
724 |
+
)
|
725 |
+
if past_loss is not None:
|
726 |
+
if end - 1 > len(past_loss):
|
727 |
+
past_loss = torch.cat(
|
728 |
+
[past_loss, torch.zeros_like(loss)[: end - 1 - len(past_loss)]]
|
729 |
+
)
|
730 |
+
past_loss[ready_end : end - 1] = loss
|
731 |
+
loss = past_loss
|
732 |
+
else:
|
733 |
+
past_loss = loss
|
734 |
+
if idx:
|
735 |
+
past_key_values = [
|
736 |
+
[k[:, :, : end - iterative_size], v[:, :, : end - iterative_size]]
|
737 |
+
for k, v in past_key_values
|
738 |
+
]
|
739 |
+
else:
|
740 |
+
past_key_values = None
|
741 |
+
|
742 |
+
if condition_compare:
|
743 |
+
self_loss, self_past_key_values = self.get_ppl(
|
744 |
+
"",
|
745 |
+
"token",
|
746 |
+
self_compressed_input_ids,
|
747 |
+
self_compressed_attention_mask,
|
748 |
+
past_key_values=self_past_key_values,
|
749 |
+
return_kv=True,
|
750 |
+
end=end - start if idx else None,
|
751 |
+
)
|
752 |
+
if self_past_loss is not None:
|
753 |
+
if end - start - 1 > len(self_past_loss):
|
754 |
+
self_past_loss = torch.cat(
|
755 |
+
[
|
756 |
+
self_past_loss,
|
757 |
+
torch.zeros_like(self_loss)[
|
758 |
+
: end - 1 - start - len(self_past_loss)
|
759 |
+
],
|
760 |
+
]
|
761 |
+
)
|
762 |
+
self_past_loss[self_ready_end : end - start - 1] = self_loss
|
763 |
+
self_loss = self_past_loss
|
764 |
+
else:
|
765 |
+
self_past_loss = self_loss
|
766 |
+
if idx:
|
767 |
+
self_past_key_values = [
|
768 |
+
[
|
769 |
+
k[:, :, : end - iterative_size - start],
|
770 |
+
v[:, :, : end - iterative_size - start],
|
771 |
+
]
|
772 |
+
for k, v in self_past_key_values
|
773 |
+
]
|
774 |
+
else:
|
775 |
+
self_past_key_values = None
|
776 |
+
|
777 |
+
self_ready_end = (
|
778 |
+
end - start - iterative_size if not (start and idx == 0) else 0
|
779 |
+
)
|
780 |
+
ready_end = end - iterative_size if not (start and idx == 0) else 0
|
781 |
+
|
782 |
+
for delta_end, ratio in iterative_ratios[idx]:
|
783 |
+
loss = past_loss
|
784 |
+
if condition_compare:
|
785 |
+
self_loss = self_past_loss
|
786 |
+
threshold = self.get_estimate_threshold_base_distribution(
|
787 |
+
self_loss[: loss[start:].shape[0]] - loss[start:], ratio, False
|
788 |
+
)
|
789 |
+
else:
|
790 |
+
threshold = self.get_estimate_threshold_base_distribution(
|
791 |
+
loss, ratio, False
|
792 |
+
)
|
793 |
+
|
794 |
+
(
|
795 |
+
compressed_input_ids,
|
796 |
+
compressed_attention_mask,
|
797 |
+
keep_flag,
|
798 |
+
end,
|
799 |
+
past_loss,
|
800 |
+
self_past_loss,
|
801 |
+
self_compressed_input_ids,
|
802 |
+
self_compressed_attention_mask,
|
803 |
+
) = self.get_compressed_input(
|
804 |
+
loss,
|
805 |
+
compressed_input_ids,
|
806 |
+
compressed_attention_mask,
|
807 |
+
end - iterative_size + delta_end,
|
808 |
+
iterative_size=delta_end,
|
809 |
+
threshold=threshold,
|
810 |
+
keep_flag=keep_flag,
|
811 |
+
split_token_id=split_token_id,
|
812 |
+
start=start,
|
813 |
+
self_loss=self_loss if condition_compare else None,
|
814 |
+
self_input_ids=self_compressed_input_ids
|
815 |
+
if condition_compare
|
816 |
+
else None,
|
817 |
+
self_attention_mask=self_compressed_attention_mask
|
818 |
+
if condition_compare
|
819 |
+
else None,
|
820 |
+
)
|
821 |
+
end += iterative_size
|
822 |
+
idx += 1
|
823 |
+
if pop_compressed_input_ids is not None:
|
824 |
+
compressed_input_ids = torch.cat(
|
825 |
+
[pop_compressed_input_ids, compressed_input_ids], dim=-1
|
826 |
+
)
|
827 |
+
return compressed_input_ids[:, start:], compressed_attention_mask[:, start:]
|
828 |
+
|
829 |
+
def recover(
|
830 |
+
self,
|
831 |
+
original_prompt: str,
|
832 |
+
compressed_prompt: str,
|
833 |
+
response: str,
|
834 |
+
):
|
835 |
+
def match_from_compressed(response_word):
|
836 |
+
response_input_ids = self.tokenizer(
|
837 |
+
response_word, add_special_tokens=False
|
838 |
+
)["input_ids"]
|
839 |
+
response_set, response_c = set(response_input_ids), defaultdict(list)
|
840 |
+
for idx in range(M):
|
841 |
+
if original_input_ids[idx] in response_set:
|
842 |
+
response_c[original_input_ids[idx]].append(idx)
|
843 |
+
res, res_min, res_c = None, float("inf"), 1
|
844 |
+
n = len(response_input_ids)
|
845 |
+
for l in response_c[response_input_ids[0]]:
|
846 |
+
x, y, c = 0, l, 1
|
847 |
+
for x in range(1, n):
|
848 |
+
idx = bisect.bisect_right(response_c[response_input_ids[x]], y)
|
849 |
+
if (
|
850 |
+
idx >= len(response_c[response_input_ids[x]])
|
851 |
+
or response_c[response_input_ids[x]][idx] - y > 10
|
852 |
+
):
|
853 |
+
continue
|
854 |
+
c += 1
|
855 |
+
y = response_c[response_input_ids[x]][idx]
|
856 |
+
if c > res_c:
|
857 |
+
res_c = c
|
858 |
+
res_min = y - l + 1
|
859 |
+
res = (l, y + 1)
|
860 |
+
elif c == res_c and y - l + 1 < res_min:
|
861 |
+
res_min = y - l + 1
|
862 |
+
res = (l, y + 1)
|
863 |
+
|
864 |
+
if res is None:
|
865 |
+
return response_word
|
866 |
+
# while l > 0 and not self.tokenizer.convert_ids_to_tokens(original_input_ids[l]).startswith("_"):
|
867 |
+
# l -= 1
|
868 |
+
# while r < M - 1 and not self.tokenizer.convert_ids_to_tokens(original_input_ids[l]).startswith("_"):
|
869 |
+
# l -= 1
|
870 |
+
return self.tokenizer.decode(original_input_ids[res[0] : res[1]])
|
871 |
+
|
872 |
+
response_words = response.split(" ")
|
873 |
+
|
874 |
+
original_input_ids = self.tokenizer(original_prompt, add_special_tokens=False)[
|
875 |
+
"input_ids"
|
876 |
+
]
|
877 |
+
N, M = len(response_words), len(original_input_ids)
|
878 |
+
recovered_response_words = []
|
879 |
+
l = 0
|
880 |
+
while l < N:
|
881 |
+
if response_words[l] not in compressed_prompt:
|
882 |
+
recovered_response_words.append(response_words[l])
|
883 |
+
l += 1
|
884 |
+
continue
|
885 |
+
r = l
|
886 |
+
while (
|
887 |
+
r + 1 < N and " ".join(response_words[l : r + 2]) in compressed_prompt
|
888 |
+
):
|
889 |
+
r += 1
|
890 |
+
|
891 |
+
match_words = match_from_compressed(" ".join(response_words[l : r + 1]))
|
892 |
+
recovered_response_words.append(match_words)
|
893 |
+
l = r + 1
|
894 |
+
return " ".join(recovered_response_words)
|
895 |
+
|
896 |
+
def get_rank_results(
|
897 |
+
self,
|
898 |
+
context: list,
|
899 |
+
question: str,
|
900 |
+
rank_method: str,
|
901 |
+
condition_in_question: str,
|
902 |
+
context_tokens_length: list,
|
903 |
+
):
|
904 |
+
def get_distance_bm25(corpus, query):
|
905 |
+
from rank_bm25 import BM25Okapi
|
906 |
+
|
907 |
+
tokenized_corpus = [doc.split(" ") for doc in corpus]
|
908 |
+
bm25 = BM25Okapi(tokenized_corpus)
|
909 |
+
tokenized_query = query.split(" ")
|
910 |
+
doc_scores = bm25.get_scores(tokenized_query)
|
911 |
+
idx = [(ii, 0) for ii in (-doc_scores).argsort()]
|
912 |
+
return idx
|
913 |
+
|
914 |
+
def get_distance_gzip(corpus, query):
|
915 |
+
def get_score(x, y):
|
916 |
+
cx, cy = len(gzip.compress(x.encode())), len(gzip.compress(y.encode()))
|
917 |
+
cxy = len(gzip.compress(f"{x} {y}".encode()))
|
918 |
+
return (cxy - min(cx, cy)) / max(cx, cy)
|
919 |
+
|
920 |
+
import gzip
|
921 |
+
|
922 |
+
doc_scores = [get_score(doc, query) for doc in corpus]
|
923 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
924 |
+
return idx
|
925 |
+
|
926 |
+
def get_distance_sentbert(corpus, query):
|
927 |
+
from sentence_transformers import SentenceTransformer, util
|
928 |
+
|
929 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
930 |
+
self.retrieval_model = SentenceTransformer("multi-qa-mpnet-base-dot-v1")
|
931 |
+
self.retrieval_model_name = rank_method
|
932 |
+
doc_embeds = self.retrieval_model.encode(corpus)
|
933 |
+
query = self.retrieval_model.encode(query)
|
934 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
935 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
936 |
+
return idx
|
937 |
+
|
938 |
+
def get_distance_openai(corpus, query):
|
939 |
+
import openai
|
940 |
+
from sentence_transformers import util
|
941 |
+
|
942 |
+
openai.api_key = self.open_api_config.get("api_key", "")
|
943 |
+
openai.api_base = self.open_api_config.get(
|
944 |
+
"api_base", "https://api.openai.com/v1"
|
945 |
+
)
|
946 |
+
openai.api_type = self.open_api_config.get("api_type", "open_ai")
|
947 |
+
openai.api_version = self.open_api_config.get("api_version", "2023-05-15")
|
948 |
+
engine = self.open_api_config.get("engine", "text-embedding-ada-002")
|
949 |
+
|
950 |
+
def get_embed(text):
|
951 |
+
return openai.Embedding.create(
|
952 |
+
input=[text.replace("\n", " ")], engine=engine
|
953 |
+
)["LongBench"][0]["embedding"]
|
954 |
+
|
955 |
+
doc_embeds = [get_embed(i) for i in corpus]
|
956 |
+
query = get_embed(query)
|
957 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
958 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
959 |
+
return idx
|
960 |
+
|
961 |
+
def get_distance_sentbert_bge(corpus, query):
|
962 |
+
from sentence_transformers import SentenceTransformer, util
|
963 |
+
|
964 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
965 |
+
self.retrieval_model = SentenceTransformer("BAAI/bge-large-en-v1.5")
|
966 |
+
self.retrieval_model_name = rank_method
|
967 |
+
doc_embeds = self.retrieval_model.encode(
|
968 |
+
[i for i in corpus], normalize_embeddings=True
|
969 |
+
)
|
970 |
+
query = self.retrieval_model.encode(query, normalize_embeddings=True)
|
971 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
972 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
973 |
+
return idx
|
974 |
+
|
975 |
+
def get_distance_bge_ranker(corpus, query):
|
976 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
977 |
+
|
978 |
+
pairs = [[i, query] for i in corpus]
|
979 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
980 |
+
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-large")
|
981 |
+
model = (
|
982 |
+
AutoModelForSequenceClassification.from_pretrained(
|
983 |
+
"BAAI/bge-reranker-large"
|
984 |
+
)
|
985 |
+
.eval()
|
986 |
+
.to(self.device)
|
987 |
+
)
|
988 |
+
self.retrieval_model = [tokenizer, model]
|
989 |
+
self.retrieval_model_name = rank_method
|
990 |
+
with torch.no_grad():
|
991 |
+
inputs = self.retrieval_model[0](
|
992 |
+
pairs,
|
993 |
+
padding=True,
|
994 |
+
truncation=True,
|
995 |
+
return_tensors="pt",
|
996 |
+
max_length=512,
|
997 |
+
).to(self.device)
|
998 |
+
scores = (
|
999 |
+
self.retrieval_model[1](**inputs, return_dict=True)
|
1000 |
+
.logits.view(
|
1001 |
+
-1,
|
1002 |
+
)
|
1003 |
+
.float()
|
1004 |
+
)
|
1005 |
+
idx = [(ii, 0) for ii in np.argsort(-scores.cpu())]
|
1006 |
+
return idx
|
1007 |
+
|
1008 |
+
def get_distance_bge_llmembedder(corpus, query):
|
1009 |
+
from transformers import AutoModel, AutoTokenizer
|
1010 |
+
|
1011 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
1012 |
+
tokenizer = AutoTokenizer.from_pretrained("BAAI/llm-embedder")
|
1013 |
+
model = (
|
1014 |
+
AutoModel.from_pretrained("BAAI/llm-embedder")
|
1015 |
+
.eval()
|
1016 |
+
.to(self.device)
|
1017 |
+
)
|
1018 |
+
self.retrieval_model = [tokenizer, model]
|
1019 |
+
self.retrieval_model_name = rank_method
|
1020 |
+
|
1021 |
+
instruction_qa_query = (
|
1022 |
+
"Represent this query for retrieving relevant documents: "
|
1023 |
+
)
|
1024 |
+
instruction_qa_key = "Represent this document for retrieval: "
|
1025 |
+
queries = [instruction_qa_query + query for _ in corpus]
|
1026 |
+
keys = [instruction_qa_key + key for key in corpus]
|
1027 |
+
with torch.no_grad():
|
1028 |
+
query_inputs = self.retrieval_model[0](
|
1029 |
+
queries,
|
1030 |
+
padding=True,
|
1031 |
+
truncation=True,
|
1032 |
+
return_tensors="pt",
|
1033 |
+
max_length=512,
|
1034 |
+
).to(self.device)
|
1035 |
+
key_inputs = self.retrieval_model[0](
|
1036 |
+
keys,
|
1037 |
+
padding=True,
|
1038 |
+
truncation=True,
|
1039 |
+
return_tensors="pt",
|
1040 |
+
max_length=512,
|
1041 |
+
).to(self.device)
|
1042 |
+
query_outputs = self.retrieval_model[1](**query_inputs)
|
1043 |
+
key_outputs = self.retrieval_model[1](**key_inputs)
|
1044 |
+
# CLS pooling
|
1045 |
+
query_embeddings = query_outputs.last_hidden_state[:, 0]
|
1046 |
+
key_embeddings = key_outputs.last_hidden_state[:, 0]
|
1047 |
+
# Normalize
|
1048 |
+
query_embeddings = torch.nn.functional.normalize(
|
1049 |
+
query_embeddings, p=2, dim=1
|
1050 |
+
)
|
1051 |
+
key_embeddings = torch.nn.functional.normalize(
|
1052 |
+
key_embeddings, p=2, dim=1
|
1053 |
+
)
|
1054 |
+
similarity = query_embeddings @ key_embeddings.T
|
1055 |
+
idx = [(ii, 0) for ii in np.argsort(-similarity[0].cpu())]
|
1056 |
+
return idx
|
1057 |
+
|
1058 |
+
def get_distance_jinza(corpus, query):
|
1059 |
+
from numpy.linalg import norm
|
1060 |
+
|
1061 |
+
from transformers import AutoModel
|
1062 |
+
|
1063 |
+
def cos_sim(a, b):
|
1064 |
+
return (a @ b.T) / (norm(a) * norm(b))
|
1065 |
+
|
1066 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
1067 |
+
model = (
|
1068 |
+
AutoModel.from_pretrained(
|
1069 |
+
"jinaai/jina-embeddings-v2-base-en", trust_remote_code=True
|
1070 |
+
)
|
1071 |
+
.eval()
|
1072 |
+
.to(self.device)
|
1073 |
+
)
|
1074 |
+
self.retrieval_model = model
|
1075 |
+
self.retrieval_model_name = rank_method
|
1076 |
+
|
1077 |
+
doc_embeds = self.retrieval_model.encode(corpus)
|
1078 |
+
query = self.retrieval_model.encode(query)
|
1079 |
+
doc_scores = cos_sim(doc_embeds, query)
|
1080 |
+
idx = [(ii, 0) for ii in np.argsort(-doc_scores)]
|
1081 |
+
return idx
|
1082 |
+
|
1083 |
+
def get_distance_voyageai(corpus, query):
|
1084 |
+
import voyageai
|
1085 |
+
from sentence_transformers import util
|
1086 |
+
|
1087 |
+
voyageai.api_key = self.open_api_config.get("voyageai_api_key", "")
|
1088 |
+
|
1089 |
+
def get_embed(text):
|
1090 |
+
return voyageai.get_embedding(text, model="voyage-01")
|
1091 |
+
|
1092 |
+
doc_embeds = [get_embed(i) for i in corpus]
|
1093 |
+
query = get_embed(query)
|
1094 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
1095 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
1096 |
+
return idx
|
1097 |
+
|
1098 |
+
def get_distance_cohere(corpus, query):
|
1099 |
+
import cohere
|
1100 |
+
|
1101 |
+
api_key = self.open_api_config.get("cohere_api_key", "")
|
1102 |
+
co = cohere.Client(api_key)
|
1103 |
+
results = co.rerank(
|
1104 |
+
model="rerank-english-v2.0", query=query, documents=corpus, top_n=20
|
1105 |
+
)
|
1106 |
+
c_map = {jj: ii for ii, jj in enumerate(corpus)}
|
1107 |
+
doc_rank = [c_map[ii.document["text"]] for ii in results]
|
1108 |
+
idx = [(ii, 0) for ii in doc_rank]
|
1109 |
+
return idx
|
1110 |
+
|
1111 |
+
def get_distance_longllmlingua(corpus, query):
|
1112 |
+
context_ppl = [
|
1113 |
+
self.get_condition_ppl(
|
1114 |
+
d,
|
1115 |
+
query
|
1116 |
+
+ " We can get the answer to this question in the given documents.",
|
1117 |
+
condition_in_question,
|
1118 |
+
)
|
1119 |
+
- dl * 2 / 250 * 0
|
1120 |
+
for d, dl in zip(corpus, context_tokens_length)
|
1121 |
+
]
|
1122 |
+
sort_direct = -1 if condition_in_question == "none" else 1
|
1123 |
+
ys = sorted(enumerate(context_ppl), key=lambda x: sort_direct * x[1])
|
1124 |
+
return ys
|
1125 |
+
|
1126 |
+
method = None
|
1127 |
+
if rank_method == "bm25":
|
1128 |
+
method = get_distance_bm25
|
1129 |
+
elif rank_method == "gzip":
|
1130 |
+
method = get_distance_gzip
|
1131 |
+
elif rank_method == "sentbert":
|
1132 |
+
method = get_distance_sentbert
|
1133 |
+
elif rank_method == "openai":
|
1134 |
+
method = get_distance_openai
|
1135 |
+
elif rank_method in ["longllmlingua", "llmlingua"]:
|
1136 |
+
method = get_distance_longllmlingua
|
1137 |
+
elif rank_method == "bge":
|
1138 |
+
method = get_distance_sentbert_bge
|
1139 |
+
elif rank_method == "bge_reranker":
|
1140 |
+
method = get_distance_bge_ranker
|
1141 |
+
elif rank_method == "bge_llmembedder":
|
1142 |
+
method = get_distance_bge_llmembedder
|
1143 |
+
elif rank_method == "jinza":
|
1144 |
+
method = get_distance_jinza
|
1145 |
+
elif rank_method == "voyageai":
|
1146 |
+
method = get_distance_voyageai
|
1147 |
+
elif rank_method == "cohere":
|
1148 |
+
method = get_distance_cohere
|
1149 |
+
return method(context, question)
|
1150 |
+
|