File size: 6,655 Bytes
15c1c8b
c643c7d
15c1c8b
 
 
74f1ddf
 
 
 
15c1c8b
 
 
827e2e2
74f1ddf
 
 
 
 
 
 
 
 
827e2e2
15c1c8b
 
 
 
 
 
 
 
 
74f1ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15c1c8b
 
74f1ddf
 
 
 
 
 
15c1c8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74f1ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15c1c8b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import streamlit as st
from streamlit_option_menu import option_menu
from transformers import pipeline
import torch
import time
import requests
import io
import os
from PIL import Image

# Load models
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-dra-en")

# for summarizer api
SUMMARIZER_API_URL = "https://api.groq.com/openai/v1/chat/completions"
summarizer_headers = {"Authorization": f"Bearer {os.getenv('GROQ_API_TOKEN')}",
                     "Content-Type": "application/json"}


# for image api
IMAGE_API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
img_headers = {"Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}"}


# Functions for each task
def translate_tamil_to_english(text):
    time.sleep(2)
    result = translator(text)
    return result[0]['translation_text']

def summarize_english_text(paragraph):
    time.sleep(2)
    # Request payload
    payload = {
        "model": "mixtral-8x7b-32768",
        "messages": [
            {"role": "system", "content": "Create a summary of below paragraph in 30 words max"},
            {"role": "user", "content": paragraph}
        ],
        "max_tokens": 100  # number of words in the output.
    }

    # Send POST request to Groq API
    response = requests.post(SUMMARIZER_API_URL, json=payload, headers=summarizer_headers)

    # Check if the request was successful
    if response.status_code == 200:
        # Parse the JSON response
        result = response.json()
        # Extract and print the generated text
        generated_text = result['choices'][0]['message']['content']
        return generated_text
    else:
        return f"Error: {response.status_code}, {response.text}"

def english_text_to_image(text):
    payload = {
        "inputs": prompt,
    }
    response = requests.post(IMAGE_API_URL, headers=img_headers, json=payload)
    image_bytes = response.content
    image = Image.open(io.BytesIO(image_bytes))
    return image

# Custom CSS
st.markdown("""
    <style>
        /* Background color */
        body {
            background-color: #f0f0f5;
        }

        /* Text color and font */
        .stApp {
            font-family: 'Arial', sans-serif;
            color: #333;
        }

        /* Titles and subtitles styling */
        h1 {
            color: #2E8B57;
            text-align: center;
            text-shadow: 2px 2px 5px #aaaaaa;
        }

        h2, h3 {
            color: #4682B4;
            text-shadow: 1px 1px 3px #aaaaaa;
        }

        /* Background texture */
        .stApp {
            background: linear-gradient(to bottom right, #fff7e6, #e6f7ff);
        }

        /* Button styling */
        button[kind="primary"] {
            background-color: #4682B4;
            color: white;
            border-radius: 8px;
            padding: 0.5rem 1rem;
        }

        button[kind="primary"]:hover {
            background-color: #5b9bd5;
        }

        /* Text area and input field styling */
        textarea, input {
            border-radius: 10px;
            padding: 1rem;
            border: 2px solid #ccc;
            background-color: #f9f9f9;
        }

        /* Styling the output boxes */
        .stMarkdown {
            background-color: #e6f9ff;
            padding: 1rem;
            border-radius: 10px;
            box-shadow: 2px 2px 10px #ccc;
        }
    </style>
    """, unsafe_allow_html=True)


#sidebar styling 
st.markdown("""
<style>
    [data-testid=stSidebar] {
        background-color: #FFFFFF;
        margin-right: 20px;
        border-right: 2px solid #FFFFFF
    }
</style>
""", unsafe_allow_html=True)

#options styling in sidebar and added image in sidebar
with st.sidebar:
    selected = option_menu(
        menu_title="",
        options=['Home','Tool'],
        icons=['house-door-fill','setting'],
        menu_icon='truck-front-fill',
        default_index=0,
        styles={
            "container": {'padding':'5!important','background-color':'#FAF9F6'},
            "icon": {'color':"#000000", "font-size":"23px"},
            "nav-link": {'font-size':'16px','text-align':'left','margin':'0px','--hover-color':'#EDEADE','font-weight':'bold'},
            "nav-link-selector":{'background-color':'#E6E6FA','font-weight':'bold'}
        }
    )


if selected == "Home":
    # Page title and header
    st.title(":blue[Multi-Purpose Tool] - Empowering Educators πŸŽ“")

    # Subheader for the app description
    st.subheader("A versatile tool designed to assist teachers in translating, summarizing, and visualizing concepts.")

    # Main description with detailed information about the app
    st.markdown("""
    The **Multi-Purpose Tool** is a user-friendly platform developed for educators, 
    enabling them to enhance their teaching experience. Whether it's translating content 
    into different languages, summarizing lengthy materials, or visualizing concepts 
    through images, this tool provides a one-stop solution for modern teaching needs.
    
    ### Key Features:
    - **Translation**: Translate text seamlessly between languages (e.g., Tamil to English).
    - **Summarization**: Quickly generate summaries of long passages for easy understanding.
    - **Text to Image**: Visualize difficult concepts by generating images from text descriptions.
    
    ### Available Worldwide:
    The Multi-Purpose Tool is deployed on Hugging Face and accessible globally to teachers 
    and educators at the click of a button. Visit the [app here](https://huggingface.co/spaces/Jesivn/Multi_Purpose_Tool).
    
    Empower your classroom with advanced AI tools today!
    """)
elif selected=="Tool":    
    # Row 1: Tamil to English translation
    st.subheader("🌐 Translate Tamil to English")
    tamil_input = st.text_area("Enter Tamil text", "")
    if st.button("Translate"):
        english_output = translate_tamil_to_english(tamil_input)
        st.markdown(f"**Translated English Text**: {english_output}")
    
    # Row 2: English paragraph summarization
    st.subheader("πŸ“ Summarize English Paragraph")
    english_paragraph = st.text_area("Enter English paragraph", "")
    if st.button("Summarize"):
        summary_output = summarize_english_text(english_paragraph)
        st.markdown(f"**Summary**: {summary_output}")
    
    # Row 3: English text to image generation
    st.subheader("🎨 Generate Image from English Text")
    image_text = st.text_input("Enter description for image generation", "")
    if st.button("Generate Image"):
        generated_image = english_text_to_image(image_text)
        st.image(generated_image, caption="Generated Image")