File size: 13,534 Bytes
30f9a75
 
 
 
 
aae634e
30f9a75
 
 
5981a16
 
30f9a75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
551b181
 
 
 
30f9a75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
551b181
 
 
30f9a75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5981a16
30f9a75
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
from langchain.tools import tool
import requests
from pydantic import BaseModel, Field
import datetime
import pandas as pd
from langchain.prompts import MessagesPlaceholder

dataf = pd.read_csv(
    "HW 1 newest version.csv"
)

# Import create_pandas_dataframe_agent from langchain_experimental.agents
from langchain_experimental.agents import create_pandas_dataframe_agent
from langchain.chat_models import ChatOpenAI
from langchain.agents.agent_types import AgentType

# Define the create_dataframe_agent_tool function
@tool
def dataframeagent(value: str) -> str:
    """
    This function searches the entire dataframe to find rows where any column contains the specified value.


    Parameters:
    value (str): The value to search for in all columns.

    Returns:
    str: A string representation of the filtered dataframe and the extremes for specified columns.
    """
    # First, search the entire dataframe for the specified value
    #filtered_data = dataf[dataf.apply(lambda row: row.astype(str).str.contains(value, case=False).any(), axis=1)]

    #if filtered_data.empty:
        #return f"No matches found for '{value}'."

    # Columns for finding highest and lowest values
    columns_to_check = ['Profit Margin', 'Operating Margin  (ttm)', 'Return on Assets  (ttm)',
                        'Return on Equity  (ttm)', 'Revenue  (ttm)', 'Revenue Per Share  (ttm)']

    result = [f"Search Results for '{value}':\n{dataf.to_string(index=False)}\n"]

    # Find and display highest and lowest values for numerical columns
    for column in columns_to_check:
        try:
            # Convert column to numeric (removing symbols like '%' and 'M' for millions)
            dataf[column] = pd.to_numeric(dataf[column].str.replace('%', '').str.replace('M', ''), errors='coerce')

            highest_row = dataf.loc[dataf[column].idxmax()]
            lowest_row = dataf.loc[dataf[column].idxmin()]

            result.append(f"Highest {column}:\n{highest_row.to_string()}\n")
            result.append(f"Lowest {column}:\n{lowest_row.to_string()}\n")
        except Exception as e:
            result.append(f"Error processing column {column}: {str(e)}\n")

    return "\n".join(result)

import json
from pathlib import Path
import pandas as pd

example_filepath = "QA_summary_zh.csv"

# Read the CSV file
csv_data = pd.read_csv(example_filepath, encoding="utf-8")

# Convert CSV to JSON
json_data = csv_data.to_json(orient='records', force_ascii=False)
json_data

# Save the JSON data to a file
json_file_path = "QA_summary_zh.json"
with open(json_file_path, 'w', encoding='utf-8') as json_file:
    json_file.write(json_data)

data = json.loads(Path(json_file_path).read_text())

from langchain.document_loaders import JSONLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter


file_path='QA_summary_zh.json'

# Define jq schema to extract text content.
# This assumes your JSON has a field named 'text' containing the relevant text.
jq_schema='.[] | {Question: .Question , Answer: .Answer , description: .description }'

loader = JSONLoader(
         file_path=file_path,
         jq_schema=jq_schema, # Add the jq_schema argument here
         text_content=False)

# Load the documents
docs = loader.load()
print(docs)

all_splits = docs

import json
from pathlib import Path
import pandas as pd
import os

from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
os.environ["OPENAI_API_KEY"] = "sk-proj-vErxLzVKAuHM8QuXOGnCT3BlbkFJM3q6IDbWmRHnWB6ZeHXZ"
vectorstore = Chroma.from_documents(documents=all_splits, embedding=OpenAIEmbeddings())

# Import necessary modules
from langchain import hub
from langchain.prompts import PromptTemplate
from langchain.schema import StrOutputParser
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
from langchain_core.runnables import RunnablePassthrough, RunnableLambda


@tool
def FAQ(question: str) -> str:
    """Processes a question, retrieves relevant context, and generates a response."""

    # Define the prompt template
    template = """
    您是一個繁體中文的助理,以下是從知識庫中檢索到的相關內容,請根據它們回答用戶的問題。

    內容: {context}

    問題: {question}



    """

    # Function to format documents
    def format_docs(docs):
        return "\n\n".join(doc.page_content for doc in docs)

    # Initialize the language model
    llm = ChatOpenAI(temperature=0.0)

    # Initialize the retriever (assuming `vectorstore` is predefined)
    retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 1})

    # Initialize the conversation memory
    memory = ConversationBufferMemory()
    conversation = ConversationChain(
        llm=llm,
        memory=memory,
        verbose=True
    )

    # Retrieve documents using the retriever
    retrieved_docs = retriever.invoke(question)
    context = format_docs(retrieved_docs)

    # Prepare the prompt input
    prompt_input = {
        "context": context,
        "question": question,
    }

    # Format prompt_input as a string
    formatted_prompt_input = template.format(
        context=prompt_input["context"],
        question=prompt_input["question"],
    )

    # Use the conversation chain to process the formatted input
    response = conversation.predict(input=formatted_prompt_input)

    return response

import requests
from bs4 import BeautifulSoup
import random

# List of different headers to mimic various browser requests
user_agents = [
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Safari/605.1.15",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.101 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0",
    "Mozilla/5.0 (iPhone; CPU iPhone OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1"
]

@tool
def gresb(query: str) -> str:
    """Processes a question, retrieves relevant context, and generates a response.
    1. article_text
    2. article_url
    """
    base_url = "https://www.gresb.com/nl-en?s="
    search_url = f"{base_url}{query.replace(' ', '+')}"

    # Select a random User-Agent header
    headers = {
        "User-Agent": random.choice(user_agents)
    }

    # Make a request to the search URL with headers
    response = requests.get(search_url, headers=headers)

    # Check if the request was successful
    if response.status_code == 200:
        # Parse the HTML content
        soup = BeautifulSoup(response.content, 'html.parser')

        # Extract search results (adjust the selector based on the website structure)
        results = soup.find_all('a', class_='overlay-link z-index-1')

        # Check if there are any results
        if results:
            # Get the first result's link
            article_url = results[0]['href']

            # Fetch the HTML content of the article
            article_response = requests.get(article_url, headers=headers)

            if article_response.status_code == 200:
                # Extract the article text and return it with the URL
                article_text = extract_article_text(article_response.content)
                return f"Article Text: {article_text}\n\nArticle URL: {article_url}"
            else:
                return f"Failed to retrieve the article page. Status code: {article_response.status_code}"
        else:
            return "No search results found."
    else:
        return f"Failed to retrieve search results. Status code: {response.status_code}"

def extract_article_text(html_content):
    soup = BeautifulSoup(html_content, 'html.parser')

    # Look for common article structures on GRESB's website
    article = soup.find('div', class_='wysiwyg')
    if article:
        paragraphs = article.find_all(['p', 'ul', 'blockquote', 'h2', 'h4'])  # Includes <p>, <ul>, <blockquote>, <h2>, <h4> tags
        return ' '.join(p.get_text() for p in paragraphs).strip()

    return "Article content not found in the provided structure."

# Example usage
#query = "london office"
#article_text = search_and_extract_gresb(query)
#print(article_text)  # This will print the extracted article content or any status messages

import os
import openai

os.environ["OPENAI_API_KEY"] = "sk-proj-vErxLzVKAuHM8QuXOGnCT3BlbkFJM3q6IDbWmRHnWB6ZeHXZ"
openai.api_key = os.environ['OPENAI_API_KEY']
tools = [gresb, dataframeagent,FAQ]

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.tools.render import format_tool_to_openai_function
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser

functions = [format_tool_to_openai_function(f) for f in tools]
model = ChatOpenAI(temperature=0).bind(functions=functions)

def run_agent(user_input):
    # 初始化一個空列表,用於存放中間步驟的結果和觀察值
    intermediate_steps = []
    max_iterations = 20  # 設置最大迭代次數,以避免無限循環
    iteration_count = 0

    # 進入循環,直到代理完成任務或者達到最大迭代次數
    while iteration_count < max_iterations:
        iteration_count += 1

        # 調用處理鏈 (agent_chain) 並傳遞用戶輸入和中間步驟數據
        result = agent_chain.invoke({
            "input": user_input,  # 傳遞用戶輸入,這裡是用戶查詢
            "intermediate_steps": intermediate_steps  # 傳遞中間步驟,初始為空列表
        })

        # 如果結果是 AgentFinish 類型,說明代理已經完成任務,返回結果
        if isinstance(result, AgentFinish):
            return result.return_values  # 返回代理的最終輸出

        # Now it's safe to print the message log
        print(result.message_log)

        # 根據結果中的工具名稱選擇合適的工具函數
        tool = {
            "gresb": gresb,
            "dataframeagent": dataframeagent,
            "FAQ":FAQ

        }.get(result.tool)

        # 如果工具函數存在,則運行工具函數
        if tool:
            observation = tool.run(result.tool_input)
            # 將當前步驟的結果和觀察值加入 intermediate_steps 列表中
            intermediate_steps.append((result, observation))
        else:
            print(f"未找到合適的工具: {result.tool}")
            break

    # 如果迭代次數超過最大限制,返回錯誤信息
    return "無法完成任務,請稍後再試。"

    from langchain.prompts import MessagesPlaceholder, ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages([
    ("system",
     """You are a helpful assistant. There are three tools to use based on different scenarios.
    1. gresb Tool:
    Usage Scenario: Use this tool when you need to search for fund information related to a specific area, city, or keyword on the GRESB website. It is ideal for searching fund details in specific locations such as "London office" or "Paris commercial real estate."


    2. dataframeagent Tool:
    Usage Scenario: This dataframe contains 'Fund Name', 'Region', 'Ticker','Profit Margin', 'Operating Margin (ttm)', 'Return on Assets (ttm)', 'Return on Equity (ttm)',
    'Revenue (ttm)', and 'Revenue Per Share (ttm)', choose one to search in the dataframe
    You have access to the following note: GRESB is not a foud.

    3. FAQ Tool
    Usage Scenario: use this tool to search for 綠建築標章申請審核認可及使用作業要點.
    example:「綠建築標章申請審核認可及使用作業要點」規定,修正重點為何?
    example:109年7月1日起申請綠建築標章評定有何改變?


"""),
    MessagesPlaceholder(variable_name="chat_history"),
    ("user", "{input}"),
    MessagesPlaceholder(variable_name="agent_scratchpad")
])


from langchain.agents.format_scratchpad import format_to_openai_functions
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.agent import AgentFinish
agent_chain = RunnablePassthrough.assign(
    agent_scratchpad= lambda x: format_to_openai_functions(x["intermediate_steps"])
) | prompt | model | OpenAIFunctionsAgentOutputParser()

from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory(return_messages=True,memory_key="chat_history")

from langchain.agents import AgentExecutor
agent_executor = AgentExecutor(agent=agent_chain, tools=tools, verbose=True, memory=memory)

import gradio as gr

# 處理函數,提取 AIMessage 的內容
def process_input(user_input):
    # 使用 agent_executor.invoke 來處理輸入
    memory.clear()
    result = agent_executor.invoke({"input": user_input})

    # 從結果中提取 AIMessage 的內容
    if 'output' in result:
        return result['output']
    else:
        return "No output found."

# 建立 Gradio 介面
iface = gr.Interface(
    fn=process_input,  # 處理函數
    inputs="text",  # 使用者輸入類型
    outputs="text",  # 輸出類型
    title="TABC",  # 介面標題
    description="The chatbot contains: Extracting YahooFinancial data, Scraping GRESB Website, and Retrieving 綠建築申請資料"  # 介面描述
)

# 啟動介面
iface.launch()