File size: 24,736 Bytes
cbdbd1c
478fd8c
 
 
 
ec04543
 
478fd8c
 
 
 
 
 
 
 
 
 
 
cbdbd1c
e4f587a
551f9f5
4ef7594
 
 
21368bb
 
 
2515edd
 
 
 
478fd8c
2515edd
 
 
478fd8c
2515edd
 
 
478fd8c
2515edd
 
 
478fd8c
2515edd
 
 
478fd8c
c9763e3
ec04543
 
21368bb
c9763e3
 
 
 
 
478fd8c
150f4d7
ec04543
21368bb
150f4d7
21368bb
150f4d7
21368bb
150f4d7
21368bb
150f4d7
21368bb
150f4d7
21368bb
ec04543
21368bb
150f4d7
21368bb
478fd8c
150f4d7
 
478fd8c
150f4d7
ec04543
21368bb
ec04543
 
21368bb
ec04543
 
 
 
 
21368bb
ec04543
 
21368bb
ec04543
 
4441603
349ff65
9525575
 
 
 
c344550
21368bb
9525575
c344550
 
 
21368bb
c344550
 
21368bb
c344550
 
 
 
 
21368bb
c344550
 
21368bb
 
 
 
 
9525575
 
478fd8c
4441603
9525575
21368bb
2a41d62
 
21368bb
2a41d62
 
21368bb
2a41d62
21368bb
478fd8c
cda9aa4
2a41d62
478fd8c
cda9aa4
2a41d62
21368bb
2a41d62
 
21368bb
478fd8c
ff1d870
6359252
 
 
 
 
 
 
 
 
 
 
 
a5cb84b
ff1d870
ec04543
21368bb
ec04543
21368bb
ec04543
21368bb
ec04543
21368bb
ec04543
21368bb
ec04543
21368bb
ec04543
21368bb
ec04543
21368bb
ec04543
21368bb
ec04543
 
 
 
 
 
 
 
 
 
4ef7594
 
 
 
 
 
 
 
 
 
 
ec04543
 
21368bb
ec04543
21368bb
ec04543
21368bb
ec04543
21368bb
ec04543
21368bb
ec04543
21368bb
ec04543
21368bb
ec04543
21368bb
ec04543
21368bb
ec04543
4ef7594
 
21368bb
 
e4f587a
4ef7594
 
 
ec04543
 
 
 
4ef7594
ec04543
4ef7594
 
 
ec04543
4ef7594
 
 
ec04543
4ef7594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f587a
4ef7594
e4f587a
478fd8c
 
 
 
 
 
ec04543
 
 
e4f587a
478fd8c
4ef7594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
551f9f5
 
 
 
 
 
 
 
 
 
4ef7594
551f9f5
4ef7594
 
 
e4f587a
478fd8c
 
4ef7594
478fd8c
4ef7594
 
478fd8c
 
 
4ef7594
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f587a
21368bb
 
 
e4f587a
 
 
 
551f9f5
4ef7594
 
 
 
 
21368bb
 
e4f587a
cbdbd1c
0f4e197
e4f587a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import gradio as gr
from queries import (clustering_esfuerzo_dieta_response, clustering_objetivo_response, clustering_entrenamiento_response, 
                     clustering_cumplimiento_dieta_response, clustering_compromiso_response, clustering_diferencia_peso_response,
                     make_query, get_min_max_mean_mode_macros_differences)
from find_matches import find_user_dates_matches, find_macros_that_match_dates_of_users
from input_options import (opciones_esfuerzo, opciones_objetivo, opciones_cumplimiento_entrenamiento,
                           opciones_cumplimiento_dieta, opciones_compromiso, diferencia_peso_options)

def clustering_responses(esfuerzo_dieta, objetivo, cumplimiento_entrenamiento, 
                    cumplimiento_dieta, compromiso, variacion_peso):
    cluster_esfuerzo_dieta = clustering_esfuerzo_dieta_response(esfuerzo_dieta)
    cluster_objetivo = clustering_objetivo_response(objetivo)
    cluster_entrenamiento = clustering_entrenamiento_response(cumplimiento_entrenamiento)
    cluster_cumplimiento_dieta = clustering_cumplimiento_dieta_response(cumplimiento_dieta)
    cluster_compromiso = clustering_compromiso_response(compromiso)
    diff_peso_min, diff_peso_max = clustering_diferencia_peso_response(variacion_peso)

    return cluster_esfuerzo_dieta, cluster_objetivo, cluster_entrenamiento, cluster_cumplimiento_dieta, cluster_compromiso, diff_peso_min, diff_peso_max

def calcular_macros(esfuerzo_dieta, objetivo, cumplimiento_entrenamiento, 
                    cumplimiento_dieta, compromiso, peso_inicial, peso_final,
                    train_day_protein_initial, train_day_carbs_initial, train_day_fat_initial,
                    intratrain_protein_initial, intratrain_carbs_initial,
                    rest_day_protein_initial, rest_day_carbs_initial, rest_day_fat_initial):
    # Logs
    logs = ""

    # Obtenemos los valores correspondientes a cada selección
    valor_esfuerzo = next(list(opcion.values())[0]["value"] 
                         for opcion in opciones_esfuerzo 
                         if list(opcion.values())[0]["text"] == esfuerzo_dieta)
    
    valor_objetivo = next(list(opcion.values())[0]["value"] 
                         for opcion in opciones_objetivo 
                         if list(opcion.values())[0]["text"] == objetivo)
    
    valor_cumplimiento_entr = next(list(opcion.values())[0]["value"] 
                                  for opcion in opciones_cumplimiento_entrenamiento 
                                  if list(opcion.values())[0]["text"] == cumplimiento_entrenamiento)
    
    valor_cumplimiento_dieta = next(list(opcion.values())[0]["value"] 
                                   for opcion in opciones_cumplimiento_dieta 
                                   if list(opcion.values())[0]["text"] == cumplimiento_dieta)
    
    valor_compromiso = next(list(opcion.values())[0]["value"] 
                          for opcion in opciones_compromiso 
                          if list(opcion.values())[0]["text"] == compromiso)
    
    # Clustering
    variacion_peso = peso_final - peso_inicial
    print(f"\n\nVariación de peso: {variacion_peso}")
    logs += f"\n\nVariación de peso: {variacion_peso}"
    (cluster_esfuerzo_dieta, cluster_objetivo, cluster_entrenamiento, cluster_cumplimiento_dieta, 
     cluster_compromiso, diff_peso_min, diff_peso_max) = clustering_responses(valor_esfuerzo, valor_objetivo, 
                                                                           valor_cumplimiento_entr, 
                                                                           valor_cumplimiento_dieta, valor_compromiso, 
                                                                           variacion_peso)
    
    # Imprimimos los resultados
    print(f"Respuestas formulario:")
    logs += f"\n\nRespuestas formulario:"
    print(f"\tEsfuerzo para cumplir dieta: {cluster_esfuerzo_dieta}")
    logs += f"\n\tEsfuerzo para cumplir dieta: {cluster_esfuerzo_dieta}"
    print(f"\tObjetivo: {cluster_objetivo}")
    logs += f"\n\tObjetivo: {cluster_objetivo}"
    print(f"\tEntrenamiento: {cluster_entrenamiento}")
    logs += f"\n\tEntrenamiento: {cluster_entrenamiento}"
    print(f"\tCumplimiento dieta: {cluster_cumplimiento_dieta}")
    logs += f"\n\tCumplimiento dieta: {cluster_cumplimiento_dieta}"
    print(f"\tCompromiso: {cluster_compromiso}")
    logs += f"\n\tCompromiso: {cluster_compromiso}"
    print(f"\tPeso inicial: {peso_inicial}, peso final: {peso_final} --> Diferencia: {variacion_peso:.1f}")
    logs += f"\n\tPeso inicial: {peso_inicial}, peso final: {peso_final} --> Diferencia: {variacion_peso:.1f}"
    print(f"\t{diff_peso_min} <= Diferencia peso <= {diff_peso_max}")
    logs += f"\n\t{diff_peso_min} <= Diferencia peso <= {diff_peso_max}"

    # Crear query
    query = make_query(cluster_esfuerzo_dieta, cluster_objetivo, cluster_entrenamiento, cluster_cumplimiento_dieta, cluster_compromiso, diff_peso_min, diff_peso_max)

    # Print query
    print(f"Query:")
    logs += f"\n\nQuery:"
    for q in query:
        print(f"\t{list(q.keys())[0]}", end=" --> ")
        logs += f"\n\t{list(q.keys())[0]} --> "
        for primary_key in q.keys():
            primary_key_dict = q[primary_key]
            for i, secondary_key in enumerate(primary_key_dict.keys()):
                if i == len(primary_key_dict.keys()) - 1:
                    print(f"{secondary_key}: \"{primary_key_dict[secondary_key]}\"", end="")
                    logs += f"{secondary_key}: \"{primary_key_dict[secondary_key]}\""
                else:
                    print(f"{secondary_key}: \"{primary_key_dict[secondary_key]}\"", end=", ")
                    logs += f"{secondary_key}: \"{primary_key_dict[secondary_key]}\", "
        print()
    
    # Crear diccionario de matches
    matches_dict = find_user_dates_matches(query, debug=False)
    num_matches = len(matches_dict)

    # Si no hay matches, intentamos con una query más básica
    if num_matches == 0:
        print("No se han encontrado coincidencias con la query original, intentamos con una query más básica")
        logs += "\n\nNo se han encontrado coincidencias con la query original, intentamos con una query más básica"
        query = make_query(cluster_esfuerzo_dieta, cluster_objetivo, cluster_entrenamiento, cluster_cumplimiento_dieta, cluster_compromiso, diff_peso_min, diff_peso_max, basic_query=True)
        
        # Print query
        print(f"Query:")
        logs += "\n\nQuery:"
        for q in query:
            print(f"\t{list(q.keys())[0]}", end=" --> ")
            logs += f"\n\t{list(q.keys())[0]} --> "
            for primary_key in q.keys():
                primary_key_dict = q[primary_key]
                for i, secondary_key in enumerate(primary_key_dict.keys()):
                    if i == len(primary_key_dict.keys()) - 1:
                        print(f"{secondary_key}: \"{primary_key_dict[secondary_key]}\"", end="")
                        logs += f"{secondary_key}: \"{primary_key_dict[secondary_key]}\""
                    else:
                        print(f"{secondary_key}: \"{primary_key_dict[secondary_key]}\"", end=", ")
                        logs += f"{secondary_key}: \"{primary_key_dict[secondary_key]}\", "
        print()
        logs += "\n"

        # Find matches
        matches_dict = find_user_dates_matches(query)
        num_matches = len(matches_dict)

    # Print matches
    print(f"Matches ({num_matches})")
    logs += f"\n\nMatches ({num_matches})"
    for user, dates in matches_dict.items():
        print(f"\t{user}", end=" --> ")
        logs += f"\t{user} --> "
        for date in dates:
            print(f"{date}", end=", ")
            logs += f"{date}, "
        print()
        logs += "\n"

    # Find macros that match dates of users
    macros_differences_list, macros_differences_dict = find_macros_that_match_dates_of_users(matches_dict)

    # Print macros
    print(f"Diferencia de macros ({len(macros_differences_dict)}):")
    logs += f"\n\nDiferencia de macros ({len(macros_differences_dict)}):"
    for user, macros_difference in macros_differences_dict.items():
        print(f"\t{user} --> fecha de match: {macros_difference['date_of_match']}, fecha de asignación de macros: {macros_difference['date_of_macros_asignation']}, días entre match y asignación: {macros_difference['days_between_match_and_macros_asignation']}, diferencia de macros: {macros_difference['macros_difference']}")
        logs += f"\n\t{user} --> fecha de match: {macros_difference['date_of_match']}, fecha de asignación de macros: {macros_difference['date_of_macros_asignation']}, días entre match y asignación: {macros_difference['days_between_match_and_macros_asignation']}, diferencia de macros: {macros_difference['macros_difference']}"

    # Calculate macros min, max and mean
    if len(macros_differences_list) > 0:
        (train_day_protein_std, train_day_carbs_std, train_day_fat_std, intratrain_protein_std, intratrain_carbs_std, 
        rest_day_protein_std, rest_day_carbs_std, rest_day_fat_std) = get_min_max_mean_mode_macros_differences(macros_differences_list)
    else:
        train_day_protein_std = [0, 0, 0, 0]
        train_day_carbs_std = [0, 0, 0, 0]
        train_day_fat_std = [0, 0, 0, 0]
        intratrain_protein_std = [0, 0, 0, 0]
        intratrain_carbs_std = [0, 0, 0, 0]
        rest_day_protein_std = [0, 0, 0, 0]
        rest_day_carbs_std = [0, 0, 0, 0]
        rest_day_fat_std = [0, 0, 0, 0]
    
    # Print macros min, max and mean
    print("Variación de macros:")
    logs += "\n\nVariación de macros:"
    print(f"\tproteína día de entreno:       Min: {train_day_protein_std[0]}, Max: {train_day_protein_std[1]}, Mean: {train_day_protein_std[2]:.2f}, Mode: {train_day_protein_std[3]}")
    logs += f"\n\tproteína día de entreno:       Min: {train_day_protein_std[0]}, Max: {train_day_protein_std[1]}, Mean: {train_day_protein_std[2]:.2f}, Mode: {train_day_protein_std[3]}"
    print(f"\tcarbohidratos día de entreno:  Min: {train_day_carbs_std[0]}, Max: {train_day_carbs_std[1]}, Mean: {train_day_carbs_std[2]:.2f}, Mode: {train_day_carbs_std[3]}")
    logs += f"\n\tcarbohidratos día de entreno:  Min: {train_day_carbs_std[0]}, Max: {train_day_carbs_std[1]}, Mean: {train_day_carbs_std[2]:.2f}, Mode: {train_day_carbs_std[3]}"
    print(f"\tgrasas día de entreno:         Min: {train_day_fat_std[0]}, Max: {train_day_fat_std[1]}, Mean: {train_day_fat_std[2]:.2f}, Mode: {train_day_fat_std[3]}")
    logs += f"\n\tgrasas día de entreno:         Min: {train_day_fat_std[0]}, Max: {train_day_fat_std[1]}, Mean: {train_day_fat_std[2]:.2f}, Mode: {train_day_fat_std[3]}"
    print(f"\tproteína intraentreno:         Min: {intratrain_protein_std[0]}, Max: {intratrain_protein_std[1]}, Mean: {intratrain_protein_std[2]:.2f}, Mode: {intratrain_protein_std[3]}")
    logs += f"\n\tproteína intraentreno:         Min: {intratrain_protein_std[0]}, Max: {intratrain_protein_std[1]}, Mean: {intratrain_protein_std[2]:.2f}, Mode: {intratrain_protein_std[3]}"
    print(f"\tcarbohidratos intraentreno:    Min: {intratrain_carbs_std[0]}, Max: {intratrain_carbs_std[1]}, Mean: {intratrain_carbs_std[2]:.2f}, Mode: {intratrain_carbs_std[3]}")
    logs += f"\n\tcarbohidratos intraentreno:    Min: {intratrain_carbs_std[0]}, Max: {intratrain_carbs_std[1]}, Mean: {intratrain_carbs_std[2]:.2f}, Mode: {intratrain_carbs_std[3]}"
    print(f"\tproteína día de descanso:      Min: {rest_day_protein_std[0]}, Max: {rest_day_protein_std[1]}, Mean: {rest_day_protein_std[2]:.2f}, Mode: {rest_day_protein_std[3]}")
    logs += f"\n\tproteína día de descanso:      Min: {rest_day_protein_std[0]}, Max: {rest_day_protein_std[1]}, Mean: {rest_day_protein_std[2]:.2f}, Mode: {rest_day_protein_std[3]}"
    print(f"\tcarbohidratos día de descanso: Min: {rest_day_carbs_std[0]}, Max: {rest_day_carbs_std[1]}, Mean: {rest_day_carbs_std[2]:.2f}, Mode: {rest_day_carbs_std[3]}")
    logs += f"\n\tcarbohidratos día de descanso: Min: {rest_day_carbs_std[0]}, Max: {rest_day_carbs_std[1]}, Mean: {rest_day_carbs_std[2]:.2f}, Mode: {rest_day_carbs_std[3]}"
    print(f"\tgrasas día de descanso:        Min: {rest_day_fat_std[0]}, Max: {rest_day_fat_std[1]}, Mean: {rest_day_fat_std[2]:.2f}, Mode: {rest_day_fat_std[3]}")
    logs += f"\n\tgrasas día de descanso:        Min: {rest_day_fat_std[0]}, Max: {rest_day_fat_std[1]}, Mean: {rest_day_fat_std[2]:.2f}, Mode: {rest_day_fat_std[3]}"

    # Get macros mode
    train_day_protein_mode = train_day_protein_std[3]
    train_day_carbs_mode = train_day_carbs_std[3]
    train_day_fat_mode = train_day_fat_std[3]
    intratrain_protein_mode = intratrain_protein_std[3]
    intratrain_carbs_mode = intratrain_carbs_std[3]
    rest_day_protein_mode = rest_day_protein_std[3]
    rest_day_carbs_mode = rest_day_carbs_std[3]
    rest_day_fat_mode = rest_day_fat_std[3]

    # Calculate macros final
    train_day_protein_final = train_day_protein_initial + train_day_protein_mode
    train_day_carbs_final = train_day_carbs_initial + train_day_carbs_mode
    train_day_fat_final = train_day_fat_initial + train_day_fat_mode
    intratrain_protein_final = intratrain_protein_initial + intratrain_protein_mode
    intratrain_carbs_final = intratrain_carbs_initial + intratrain_carbs_mode
    rest_day_protein_final = rest_day_protein_initial + rest_day_protein_mode
    rest_day_carbs_final = rest_day_carbs_initial + rest_day_carbs_mode
    rest_day_fat_final = rest_day_fat_initial + rest_day_fat_mode

    # Print macros
    print("Macros finales:")
    logs += "\n\nMacros finales:"
    print(f"\tProteína día de entreno inicial:       {train_day_protein_initial} --> final: {train_day_protein_final}")
    logs += f"\n\tProteína día de entreno inicial:       {train_day_protein_initial} --> final: {train_day_protein_final}"
    print(f"\tCarbohidratos día de entreno inicial:  {train_day_carbs_initial} --> final: {train_day_carbs_final}")
    logs += f"\n\tCarbohidratos día de entreno inicial:  {train_day_carbs_initial} --> final: {train_day_carbs_final}"
    print(f"\tGrasas día de entreno inicial:         {train_day_fat_initial} --> final: {train_day_fat_final}")
    logs += f"\n\tGrasas día de entreno inicial:         {train_day_fat_initial} --> final: {train_day_fat_final}"
    print(f"\tProteína intraentreno inicial:         {intratrain_protein_initial} --> final: {intratrain_protein_final}")
    logs += f"\n\tProteína intraentreno inicial:         {intratrain_protein_initial} --> final: {intratrain_protein_final}"
    print(f"\tCarbohidratos intraentreno inicial:    {intratrain_carbs_initial} --> final: {intratrain_carbs_final}")
    logs += f"\n\tCarbohidratos intraentreno inicial:    {intratrain_carbs_initial} --> final: {intratrain_carbs_final}"
    print(f"\tProteína día de descanso inicial:      {rest_day_protein_initial} --> final: {rest_day_protein_final}")
    logs += f"\n\tProteína día de descanso inicial:      {rest_day_protein_initial} --> final: {rest_day_protein_final}"
    print(f"\tCarbohidratos día de descanso inicial: {rest_day_carbs_initial} --> final: {rest_day_carbs_final}")
    logs += f"\n\tCarbohidratos día de descanso inicial: {rest_day_carbs_initial} --> final: {rest_day_carbs_final}"
    print(f"\tGrasas día de descanso inicial:        {rest_day_fat_initial} --> final: {rest_day_fat_final}")
    logs += f"\n\tGrasas día de descanso inicial:        {rest_day_fat_initial} --> final: {rest_day_fat_final}"

    return (train_day_protein_final, train_day_carbs_final, train_day_fat_final,
            intratrain_protein_final, intratrain_carbs_final,
            rest_day_protein_final, rest_day_carbs_final, rest_day_fat_final,
            logs)

# Definimos el color naranja
naranja = "#ea580b"

title = f"""
<h1 style="text-align: center; color: {naranja}; margin: 0; padding-bottom: 30px; font-size: 50px;">Macros evolution</h1>
"""

title_macros_iniciales_html = f"""
<h2 style="text-align: center; color: {naranja}; margin: 0; padding: 0;">Macros iniciales</h2>
"""

title_cuestionario_html = f"""
<h2 style="text-align: center; color: {naranja}; margin: 0; padding: 0;">Respuestas cuestionario</h2>
"""

title_macros_finales_html = f"""
<h2 style="text-align: center; color: {naranja}; margin: 0; padding: 0;">Macros finales</h2>
"""

style_css = f"""
<style>
    .demo {{
        background-color: {naranja};
    }}
    .input-group, .output-group {{
        background-color: {naranja};
        padding: 2px;
        border-radius: 7px;
    }}
    .input-row .output-row {{
    }}
    .input-column {{
    }}
    .input-number {{
        background-color: black;
        color: white;
    }}
    .input-dropdown {{
        background-color: black;
        color: white;
    }}
    .calcular-btn {{
        background-color: {naranja};
        color: white;
        border-radius: 7px;
        margin-bottom: 70px;
    }}
    .output-number {{
        background-color: black;
        color: white;
    }}
</style>
"""

# Creamos la interfaz
with gr.Blocks(css=style_css, elem_classes="demo") as demo:
    
    # Procesamos las opciones para obtener solo los textos
    textos_esfuerzo = [list(opcion.values())[0]["text"] for opcion in opciones_esfuerzo]
    textos_objetivo = [list(opcion.values())[0]["text"] for opcion in opciones_objetivo]
    textos_cumplimiento_entr = [list(opcion.values())[0]["text"] for opcion in opciones_cumplimiento_entrenamiento]
    textos_cumplimiento_dieta = [list(opcion.values())[0]["text"] for opcion in opciones_cumplimiento_dieta]
    textos_compromiso = [list(opcion.values())[0]["text"] for opcion in opciones_compromiso]

    # Title
    gr.Markdown(title)
    
    # Entradas
    gr.Markdown(title_macros_iniciales_html)
    with gr.Group(elem_classes="input-group"):
        with gr.Row(elem_classes="input-row"):
            with gr.Column(elem_classes="input-column"):
                train_day_protein_initial = gr.Number(
                    label="Proteína día de entreno (g)", 
                    precision=0,
                    value=150,
                    step=10,
                    minimum=0,
                    elem_classes="input-number"
                )
                train_day_carbs_initial = gr.Number(
                    label="Carbohidratos día de entreno (g)", 
                    precision=0,
                    value=150,
                    step=10,
                    minimum=0,
                    elem_classes="input-number"
                )
                train_day_fat_initial = gr.Number(
                    label="Grasas día de entreno (g)", 
                    precision=0,
                    value=150,
                    step=10,
                    minimum=0,
                    elem_classes="input-number"
                )
            with gr.Column(elem_classes="input-column"):
                intratrain_protein_initial = gr.Number(
                    label="Proteína intraentreno (g)", 
                    precision=0,
                    value=150,
                    step=10,
                    minimum=0,
                    elem_classes="input-number"
                )
                intratrain_carbs_initial = gr.Number(
                    label="Carbohidratos intraentreno (g)", 
                    precision=0,
                    value=150,
                    step=10,
                    minimum=0,
                    elem_classes="input-number"
                )
            with gr.Column(elem_classes="input-column"):
                rest_day_protein_initial = gr.Number(
                    label="Proteína día de descanso (g)", 
                    precision=0,
                    value=150,
                    step=10,
                    minimum=0,
                    elem_classes="input-number"
                )
                rest_day_carbs_initial = gr.Number(
                    label="Carbohidratos día de descanso (g)", 
                    precision=0,
                    value=150,
                    step=10,
                    minimum=0,
                    elem_classes="input-number"
                )
                rest_day_fat_initial = gr.Number(
                    label="Grasas día de descanso (g)", 
                    precision=0,
                    value=150,
                    step=10,
                    minimum=0,
                    elem_classes="input-number"
                )
    
    gr.Markdown(title_cuestionario_html)
    with gr.Group(elem_classes="input-group"):
        with gr.Row(elem_classes="input-row"):
            esfuerzo = gr.Dropdown(
                choices=textos_esfuerzo, 
                label="Esfuerzo dieta",
                value="No costó nada",
                elem_classes="input-dropdown"
            )
            cumplimiento_dieta = gr.Dropdown(
                choices=textos_cumplimiento_dieta, 
                label="Cumplimiento de la dieta",
                value="Perfecta",
                elem_classes="input-dropdown"
            )
            objetivo = gr.Dropdown(
                choices=textos_objetivo, 
                label="Objetivo",
                value="volumen (nada cambia)",
                elem_classes="input-dropdown"
            )
        with gr.Row(elem_classes="input-row"):
            cumplimiento_entr = gr.Dropdown(
                choices=textos_cumplimiento_entr, 
                label="Cumplimiento del entrenamiento",
                value="Lo hice perfecto",
                elem_classes="input-dropdown"
            )
            compromiso = gr.Dropdown(
                choices=textos_compromiso, 
                label="Compromiso",
                value="Máximo",
                elem_classes="input-dropdown"
            )
        with gr.Row(elem_classes="input-row"):
            peso_inicial = gr.Number(
                label="Peso inicial (kg)", 
                precision=2,
                value=70,
                step=0.1,
                elem_classes="input-number"
            )
            peso_final = gr.Number(
                label="Peso final (kg)", 
                precision=2,
                value=70.7,
                step=0.1,
                elem_classes="input-number"
            )
    
    # Versión simple del botón
    calcular_btn = gr.Button(
        "Calcular macros",
        variant="primary",
        size="lg",
        elem_classes="calcular-btn"
    )
    
    # Salidas
    gr.Markdown(title_macros_finales_html)
    with gr.Group(elem_classes="output-group"):
        with gr.Row(elem_classes="output-row"):
            with gr.Column():
                train_day_protein_final = gr.Number(label="Proteína día de entreno Final (g)", precision=0, elem_classes="output-number")
                train_day_carbs_final = gr.Number(label="Carbohidratos día de entreno Final (g)", precision=0, elem_classes="output-number")
                train_day_fat_final = gr.Number(label="Grasas día de entreno Final (g)", precision=0, elem_classes="output-number")
            with gr.Column():
                intratrain_protein_final = gr.Number(label="Proteína intraentreno Final (g)", precision=0, elem_classes="output-number")
                intratrain_carbs_final = gr.Number(label="Carbohidratos intraentreno Final (g)", precision=0, elem_classes="output-number")
            with gr.Column():
                rest_day_protein_final = gr.Number(label="Proteína día de descanso Final (g)", precision=0, elem_classes="output-number")
                rest_day_carbs_final = gr.Number(label="Carbohidratos día de descanso Final (g)", precision=0, elem_classes="output-number")
                rest_day_fat_final = gr.Number(label="Grasas día de descanso Final (g)", precision=0, elem_classes="output-number")
    
    # Logs
    logs = gr.Textbox(label="Logs", lines=10, elem_classes="output-textbox", visible=False)

    # Conectamos el botón con la función
    calcular_btn.click(
        fn=calcular_macros,
        inputs=[esfuerzo, objetivo, cumplimiento_entr, cumplimiento_dieta, 
                compromiso, peso_inicial, peso_final,
                train_day_protein_initial, train_day_carbs_initial, train_day_fat_initial,
                intratrain_protein_initial, intratrain_carbs_initial,
                rest_day_protein_initial, rest_day_carbs_initial, rest_day_fat_initial],
        outputs=[train_day_protein_final, train_day_carbs_final, train_day_fat_final,
                 intratrain_protein_final, intratrain_carbs_final,
                 rest_day_protein_final, rest_day_carbs_final, rest_day_fat_final,
                 logs]
    )

demo.launch()