File size: 32,448 Bytes
478fd8c 349ff65 478fd8c f63b719 478fd8c f63b719 478fd8c f63b719 478fd8c f63b719 478fd8c ec04543 478fd8c ec04543 478fd8c ec04543 478fd8c ec04543 478fd8c ec04543 478fd8c ec04543 478fd8c ec04543 478fd8c ec04543 478fd8c ec04543 478fd8c ec04543 478fd8c ec04543 478fd8c ec04543 478fd8c ec04543 478fd8c ec04543 478fd8c ec04543 478fd8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 |
from create_new_formularios import get_sorted_date_keys
from pathlib import Path
from datetime import datetime
from create_new_usuarios import get_macros_from_string
import statistics
def query_formularios(data, query_list, debug=False, file_name=None):
if file_name is not None:
debug = True
print(f"***************** file_name: {file_name} *****************")
# Get date keys
date_keys = get_sorted_date_keys(data)
if debug: print(f"\n\n\ndate_keys: {date_keys}")
# List of date keys that match the query
date_keys_that_match = []
# No data value
no_data_value = "| no data"
# Get all the keys in the query_list
queries_list = []
for query in query_list:
queries_list.append(query)
if debug:
print("queries_list:")
for query in queries_list:
for key in query.keys():
print(f"\tkey: {key}", end=" --> ")
for second_key in query[key].keys():
print(f"{key}: {query[key][second_key]}", end=", ")
print("")
# For each date key get all the keys
for date_key in date_keys:
if debug: print(f"\n * date_key: {date_key}")
# match is a boolean that will be true if the key is in query_dict
match = False
if debug: print(f"\tinitial match value: {match}")
# Get all the keys in the data
data_keys = data[date_key].keys()
if debug: print(f"\tkeys: {data_keys}")
# Find for each key if it is in query_dict
for query in queries_list:
# Get the query key
query_key = list(query.keys())[0]
# Get the query operator and value
query_operator = query[query_key]['operator']
is_operator_for_numbers = query_operator == '>' or query_operator == '<' or query_operator == '>=' or query_operator == '<='
query_value = query[query_key]['value']
type_of_query_value = type(query_value)
is_query_value_string = type_of_query_value == str
is_query_value_number = type_of_query_value == int or type_of_query_value == float
# Check if the query key is in the data
if query_key in data_keys:
# Get the data value
data_value = data[date_key][query_key]
if isinstance(data_value, str):
data_value = data_value.lower()
data_value = data_value.replace('á', 'a')
data_value = data_value.replace('é', 'e')
data_value = data_value.replace('í', 'i')
data_value = data_value.replace('ó', 'o')
data_value = data_value.replace('ú', 'u')
type_of_data_value = type(data_value)
is_data_value_string = type_of_data_value == str
is_data_value_number = type_of_data_value == int or type_of_data_value == float
is_data_value_and_query_value_number = is_data_value_number and is_query_value_number
is_data_value_and_query_value_string = is_data_value_string and is_query_value_string
is_data_value_or_query_value_number = is_data_value_number or is_query_value_number
is_data_value_or_query_value_string = is_data_value_string or is_query_value_string
if debug: print(f"\t\tchecking \"{query_key}\" in data, query operator: \"{query_operator}\", query value: \"{query_value}\", data value: \"{data_value}\"")
# Check if the data value matches the query value
if query_operator == '==':
if query_value == data_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is equal to \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT equal to \"{data_value}\", match: {match}")
break
# continue
elif query_operator == '!=':
if query_value != data_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is NOT equal to \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT equal to \"{data_value}\", match: {match}")
break
# continue
elif is_query_value_number and is_data_value_number and query_operator == '>':
if data_value > query_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is greater than \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT greater than \"{data_value}\", match: {match}")
break
# continue
elif is_query_value_number and is_data_value_number and query_operator == '<':
if data_value < query_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is less than \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT less than \"{data_value}\", match: {match}")
break
# continue
elif is_query_value_number and is_data_value_number and query_operator == '>=':
if data_value >= query_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is greater than or equal to \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT greater than or equal to \"{data_value}\", match: {match}")
break
# continue
elif is_query_value_number and is_data_value_number and query_operator == '<=':
if data_value <= query_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is less than or equal to \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT less than or equal to \"{data_value}\", match: {match}")
break
# continue
elif is_query_value_string and is_data_value_string and query_operator == 'in' or query_operator == 'contains':
if query_value in data_value or no_data_value in data_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is in \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT in \"{data_value}\", match: {match}")
break
# continue
elif is_query_value_string and is_data_value_string and (query_operator == 'NOT in' or query_operator == 'NOT contains'):
if query_value not in data_value or no_data_value in data_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is NOT in \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT in \"{data_value}\", match: {match}")
break
# continue
elif query_operator == 'is null':
if data_value is None:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is null, match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT null, match: {match}")
break
# continue
elif query_operator == 'is NOT null':
if data_value is not None:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is NOT null, match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT null, match: {match}")
break
# continue
elif is_operator_for_numbers and is_data_value_or_query_value_string:
if is_data_value_string and is_query_value_string:
match = False
if debug: print(f"\t\t\toperator \"{query_operator}\" NOT supported, because data value is string and query value is string, match: {match}")
break
elif is_data_value_string and is_query_value_number:
match = False
if debug: print(f"\t\t\toperator \"{query_operator}\" NOT supported, because data value is string, match: {match}")
break
else:
match = False
if debug: print(f"\t\t\toperator \"{query_operator}\" NOT supported, because query value is number, match: {match}")
break
else:
match = False
if debug: print(f"\t\t\toperator \"{query_operator}\" NOT supported, match: {match}")
break
# continue
# If the match is true, add the date_key to the list
if match:
if debug: print(f"\t***** {query_key} matches, adding date_key: {date_key} *****")
date_keys_that_match.append(date_key)
if debug:
print("\t dates that match:")
for date_key in date_keys_that_match:
print(f"\t\t{date_key}")
return date_keys_that_match
def string_date_list_to_date_list(string_date_list):
date_list = []
for string_date in string_date_list:
date_list.append(datetime.strptime(string_date, '%Y-%m-%d'))
return date_list
def date_to_string(date):
string_date = date.strftime('%Y-%m-%d')
string_date = string_date.replace('-01', '-1')
string_date = string_date.replace('-02', '-2')
string_date = string_date.replace('-03', '-3')
string_date = string_date.replace('-04', '-4')
string_date = string_date.replace('-05', '-5')
string_date = string_date.replace('-06', '-6')
string_date = string_date.replace('-07', '-7')
string_date = string_date.replace('-08', '-8')
string_date = string_date.replace('-09', '-9')
return string_date
def get_days_between_dates(date1, date2):
if isinstance(date1, str):
date1 = datetime.strptime(date1, '%Y-%m-%d')
if isinstance(date2, str):
date2 = datetime.strptime(date2, '%Y-%m-%d')
return (date1 - date2).days
def query_usuarios(data, query_list, limit_days=8, debug=False):
# Get date keys
date_keys = get_sorted_date_keys(data)
if debug: print(f"\tdate_keys: {date_keys}")
# Format date_keys to date objects
date_keys = string_date_list_to_date_list(date_keys)
# Format query_list to date objects
if debug: print(f"\tquery_list: {query_list}")
query_list = string_date_list_to_date_list(query_list)
# Create empty list to store the date_keys that match
date_keys_that_match = []
# Create empty list to store the macros differences date
macros_differences_dates = []
# Iterate for each query_list date
for query_date in query_list:
# Iterate for each date_key
for date_key in date_keys:
# Get the days between the query_date and the date_key
days_between = get_days_between_dates(query_date, date_key)
if days_between <= limit_days and days_between > 0:
if debug: print(f"\tdays between form data {date_to_string(query_date)} and macros change data {date_to_string(date_key)}: {days_between}")
# Add the date_key to the list and break the loop, because is first mach so is match with less days between dates
date_keys_that_match.append(date_to_string(date_key))
# Add the date_key to the macros_differences_dates list
macros_differences_dates.append(date_to_string(query_date))
break
return date_keys_that_match, macros_differences_dates
def get_macros_differences(data, dates_list):
macros_differences_list = []
for date in dates_list:
macros_differences_list.append(data[date]['diferencia_macros'])
return macros_differences_list
def get_min_max_mean_mode_macros_differences(macros_differences_list):
# Create list for each macro
train_day_protein_list = []
train_day_carbs_list = []
train_day_fat_list = []
intratrain_protein_list = []
intratrain_carbs_list = []
rest_day_protein_list = []
rest_day_carbs_list = []
rest_day_fat_list = []
# Iterate over the macros differences list
for macros_difference in macros_differences_list:
# Get the macros difference as a list of integers
macros_difference_int_list = get_macros_from_string(macros_difference)
# Append the macros difference to the list
train_day_protein_list.append(macros_difference_int_list[0])
train_day_carbs_list.append(macros_difference_int_list[1])
train_day_fat_list.append(macros_difference_int_list[2])
intratrain_protein_list.append(macros_difference_int_list[3])
intratrain_carbs_list.append(macros_difference_int_list[4])
rest_day_protein_list.append(macros_difference_int_list[5])
rest_day_carbs_list.append(macros_difference_int_list[6])
rest_day_fat_list.append(macros_difference_int_list[7])
# Get the min, max, mean and mode of the macros differences
min_train_day_protein = min(train_day_protein_list)
max_train_day_protein = max(train_day_protein_list)
mean_train_day_protein = sum(train_day_protein_list) / len(train_day_protein_list)
mode_train_day_protein = statistics.mode(train_day_protein_list)
train_day_protein_std = (min_train_day_protein, max_train_day_protein, mean_train_day_protein, mode_train_day_protein)
min_train_day_carbs = min(train_day_carbs_list)
max_train_day_carbs = max(train_day_carbs_list)
mean_train_day_carbs = sum(train_day_carbs_list) / len(train_day_carbs_list)
mode_train_day_carbs = statistics.mode(train_day_carbs_list)
train_day_carbs_std = (min_train_day_carbs, max_train_day_carbs, mean_train_day_carbs, mode_train_day_carbs)
min_train_day_fat = min(train_day_fat_list)
max_train_day_fat = max(train_day_fat_list)
mean_train_day_fat = sum(train_day_fat_list) / len(train_day_fat_list)
mode_train_day_fat = statistics.mode(train_day_fat_list)
train_day_fat_std = (min_train_day_fat, max_train_day_fat, mean_train_day_fat, mode_train_day_fat)
min_intratrain_protein = min(intratrain_protein_list)
max_intratrain_protein = max(intratrain_protein_list)
mean_intratrain_protein = sum(intratrain_protein_list) / len(intratrain_protein_list)
mode_intratrain_protein = statistics.mode(intratrain_protein_list)
intratrain_protein_std = (min_intratrain_protein, max_intratrain_protein, mean_intratrain_protein, mode_intratrain_protein)
min_intratrain_carbs = min(intratrain_carbs_list)
max_intratrain_carbs = max(intratrain_carbs_list)
mean_intratrain_carbs = sum(intratrain_carbs_list) / len(intratrain_carbs_list)
mode_intratrain_carbs = statistics.mode(intratrain_carbs_list)
intratrain_carbs_std = (min_intratrain_carbs, max_intratrain_carbs, mean_intratrain_carbs, mode_intratrain_carbs)
min_rest_day_protein = min(rest_day_protein_list)
max_rest_day_protein = max(rest_day_protein_list)
mean_rest_day_protein = sum(rest_day_protein_list) / len(rest_day_protein_list)
mode_rest_day_protein = statistics.mode(rest_day_protein_list)
rest_day_protein_std = (min_rest_day_protein, max_rest_day_protein, mean_rest_day_protein, mode_rest_day_protein)
min_rest_day_carbs = min(rest_day_carbs_list)
max_rest_day_carbs = max(rest_day_carbs_list)
mean_rest_day_carbs = sum(rest_day_carbs_list) / len(rest_day_carbs_list)
mode_rest_day_carbs = statistics.mode(rest_day_carbs_list)
rest_day_carbs_std = (min_rest_day_carbs, max_rest_day_carbs, mean_rest_day_carbs, mode_rest_day_carbs)
min_rest_day_fat = min(rest_day_fat_list)
max_rest_day_fat = max(rest_day_fat_list)
mean_rest_day_fat = sum(rest_day_fat_list) / len(rest_day_fat_list)
mode_rest_day_fat = statistics.mode(rest_day_fat_list)
rest_day_fat_std = (min_rest_day_fat, max_rest_day_fat, mean_rest_day_fat, mode_rest_day_fat)
return train_day_protein_std, train_day_carbs_std, train_day_fat_std, intratrain_protein_std, intratrain_carbs_std, rest_day_protein_std, rest_day_carbs_std, rest_day_fat_std
def clustering_esfuerzo_dieta_response(response, debug=False):
# Options:
# No entiendo la calculadora, quiero menús tipo, cárgame 4|I: 2
# No costó nada|A: 1504
# Costó demasiado, súbeme macros|D: 28
# Costó, pero me adapto a nuevos ajustes|C: 331
# Iba a coger menús tipo, pero al final por precio no|D: 13
# Costó demasiado, bájame macros|D: 42
# No entiendo la calculadora, quiero menús tipo, cárgame 2|I: 3
#
# Clustering:
# 0 (No data):
# No entiendo la calculadora, quiero menús tipo, cárgame 4|I: 2 | No data
# Iba a coger menús tipo, pero al final por precio no|D: 13 | No data
# No entiendo la calculadora, quiero menús tipo, cárgame 2|I: 3 | No data
# 1 (costó subir macros):
# Costó demasiado, súbeme macros|D: 28 | costo subir macros
# 2 (costó bajar macros):
# Costó demasiado, bájame macros|D: 42 | costo bajar macros
# 3 (costó y me adapto a nuevos ajustes):
# Costó, pero me adapto a nuevos ajustes|C: 331 | costo y me adapto a nuevos ajustes
# 4 (no costó):
# No costó nada|A: 1504 | no costo
if " | No data".lower() in response.lower() or 'no data'.lower() in response.lower():
if debug: print(f"\t\t{response} -> no data")
return 'no data'
elif " | costo subir macros".lower() in response.lower() or 'costo subir macros'.lower() in response.lower():
if debug: print(f"\t\t{response} -> costo subir macros")
return 'costo subir macros'
elif " | costo bajar macros".lower() in response.lower() or 'costo bajar macros'.lower() in response.lower():
if debug: print(f"\t\t{response} -> costo bajar macros")
return 'costo bajar macros'
elif " | costo y me adapto a nuevos ajustes".lower() in response.lower() or 'costo y me adapto a nuevos ajustes'.lower() in response.lower():
if debug: print(f"\t\t{response} -> costo y me adapto a nuevos ajustes")
return 'costo y me adapto a nuevos ajustes'
elif " | no costo".lower() in response.lower() or 'no costo'.lower() in response.lower():
if debug: print(f"\t\t{response} -> no costo")
return 'no costo'
else:
if debug: print(f"\t\t{response} -> no data")
return 'no data'
def clustering_objetivo_response(response, debug=False):
# Options:
# definición (nada cambia)|A: 1031
# empezamos a definir (cambia)|C: 92
# perder peso (nada cambia)|A: 21
# volumen (nada cambia)|A: 688
# empezamos a coger volumen (cambia)|C: 78
# empezamos a coger volumen, sobre todo tren inferior (cambia)|C: 7
# empezamos a coger volumen, en todo el cuerpo (cambia)|C: 6
#
# Clustering:
# 0 (definición):
# definición (nada cambia)|A: 1031 | definición
# empezamos a definir (cambia)|C: 92 | definición
# perder peso (nada cambia)|A: 21 | definición
# 1 (volumen):
# volumen (nada cambia)|A: 688 | volumen
# empezamos a coger volumen (cambia)|C: 78 | volumen
# empezamos a coger volumen, sobre todo tren inferior (cambia)|C: 7 | volumen
# empezamos a coger volumen, en todo el cuerpo (cambia)|C: 6 | volumen
if " | definicion".lower() in response.lower() or 'definicion'.lower() in response.lower():
if debug: print(f"\t\t{response} -> definicion")
return 'definicion'
elif " | volumen".lower() in response.lower() or 'volumen'.lower() in response.lower():
if debug: print(f"\t\t{response} -> volumen")
return 'volumen'
else:
if debug: print(f"\t\t{response} -> no data")
return 'no data'
def clustering_entrenamiento_response(response, debug=False):
# Options:
# Lo hice perfecto|A|10: 838
# He fallado algunos días, pero sí|B|5: 98
# Lesión importante: 16
# Lo hice prácticamente perfecto|A|8: 416
# Pequeña lesión: 63
# No hice nada, mantenemos la rutina un mes más|I|0: 64
# Alárgame la rutina una semana más|I|6: 32
#
# Clustering:
# 0 (bien):
# Lo hice perfecto|A|10: 838 | bien
# He fallado algunos días, pero sí|B|5: 98 | bien
# Lo hice prácticamente perfecto|A|8: 416 | bien
# 1 (mal):
# Lesión importante: 16 | mal
# Pequeña lesión: 63 | mal
# No hice nada, mantenemos la rutina un mes más|I|0: 64 | mal
# Alárgame la rutina una semana más|I|6: 32 | mal
if " | bien".lower() in response.lower() or 'bien'.lower() in response.lower():
if debug: print(f"\t\t{response} -> bien")
return 'bien'
elif " | mal".lower() in response.lower() or 'mal'.lower() in response.lower():
if debug: print(f"\t\t{response} -> mal")
return 'mal'
else:
if debug: print(f"\t\t{response} -> no data")
return 'no data'
def clustering_cumplimiento_dieta_response(response, debug=False):
# Options:
# al 70%|B|6: 564
# regular, me cuesta llegar|C|5: 57
# Nada, mantén mis macros|I|0: 123
# casi perfecta|A|9: 610
# regular, me salto la dieta|C|4: 6
# Perfecta|A|10: 563
#
# Clustering:
# 0 (bien):
# al 70%|B|6: 564 | bien
# casi perfecta|A|9: 610 | bien
# Perfecta|A|10: 563 | bien
# 1 (regular):
# regular, me cuesta llegar|C|5: 57 | regular
# regular, me salto la dieta|C|4: 6 | regular
# 2 (mal):
# Nada, mantén mis macros|I|0: 123 | mal
if " | bien".lower() in response.lower() or 'bien'.lower() in response.lower():
if debug: print(f"\t\t{response} -> bien")
return 'bien'
elif " | regular".lower() in response.lower() or 'regular'.lower() in response.lower():
if debug: print(f"\t\t{response} -> regular")
return 'regular'
elif "nada" in response.lower() or 'mal'.lower() in response.lower():
if debug: print(f"\t\t{response} -> mal")
return 'mal'
else:
if debug: print(f"\t\t{response} -> no data")
return 'no data'
def clustering_compromiso_response(response, debug=False):
# Options:
# Bueno, pero mejorable|B|7: 604
# Mal, pero a partir de ahora voy a por todas|C|0: 319
# Mal, demasiado exigente|D|0: 15
# Máximo|A|10: 985
#
# Clustering:
# 0 (bueno):
# Bueno, pero mejorable|B|7: 604 | bueno
# Máximo|A|10: 985 | bueno
# 1 (mal):
# Mal, pero a partir de ahora voy a por todas|C|0: 319 | mal
# Mal, demasiado exigente|D|0: 15 | mal
if " | bueno".lower() in response.lower() or 'bueno'.lower() in response.lower():
if debug: print(f"\t\t{response} -> bueno")
return 'bueno'
elif " | mal".lower() in response.lower() or 'mal'.lower() in response.lower():
if debug: print(f"\t\t{response} -> mal")
return 'mal'
else:
if debug: print(f"\t\t{response} -> no data")
return 'no data'
def clustering_diferencia_peso_response(diff, debug=False):
diff_min = None
diff_max = None
if diff <= -5.0:
if debug: print(f"\t\t-10 <= {diff} <= -5")
diff_min = -10
diff_max = -5
elif diff <= -4.5:
if debug: print(f"\t\t-5 <= {diff} <= -4.5")
diff_min = -5
diff_max = -4.5
elif diff <= -4.0:
if debug: print(f"\t\t-4.5 <= {diff} <= -4.0")
diff_min = -4.5
diff_max = -4.0
elif diff <= -3.5:
if debug: print(f"\t\t-4.0 <= {diff} <= -3.5")
diff_min = -4.0
diff_max = -3.5
elif diff <= -3.0:
if debug: print(f"\t\t-3.5 <= {diff} <= -3.0")
diff_min = -3.5
diff_max = -3.0
elif diff <= -2.5:
if debug: print(f"\t\t-3.0 <= {diff} <= -2.5")
diff_min = -3.0
diff_max = -2.5
elif diff <= -2.0:
if debug: print(f"\t\t-2.5 <= {diff} <= -2.0")
diff_min = -2.5
diff_max = -2.0
elif diff <= -1.5:
if debug: print(f"\t\t-2.0 <= {diff} <= -1.5")
diff_min = -2.0
diff_max = -1.5
elif diff <= -1.0:
if debug: print(f"\t\t-1.5 <= {diff} <= -1.0")
diff_min = -1.5
diff_max = -1.0
elif diff <= -0.5:
if debug: print(f"\t\t-1.0 <= {diff} <= -0.5")
diff_min = -1.0
diff_max = -0.5
elif diff <= 0.0:
if debug: print(f"\t\t-0.5 <= {diff} <= 0.0")
diff_min = -0.5
diff_max = 0.0
elif diff <= 0.5:
if debug: print(f"\t\t0.0 <= {diff} <= 0.5")
diff_min = 0.0
diff_max = 0.5
elif diff <= 1.0:
if debug: print(f"\t\t0.5 <= {diff} <= 1.0")
diff_min = 0.5
diff_max = 1.0
elif diff <= 1.5:
if debug: print(f"\t\t1.0 <= {diff} <= 1.5")
diff_min = 1.0
diff_max = 1.5
elif diff <= 2.0:
if debug: print(f"\t\t1.5 <= {diff} <= 2.0")
diff_min = 1.5
diff_max = 2.0
elif diff <= 2.5:
if debug: print(f"\t\t2.0 <= {diff} <= 2.5")
diff_min = 2.0
diff_max = 2.5
elif diff <= 3.0:
if debug: print(f"\t\t2.5 <= {diff} <= 3.0")
diff_min = 2.5
diff_max = 3.0
elif diff <= 3.5:
if debug: print(f"\t\t3.0 <= {diff} <= 3.5")
diff_min = 3.0
diff_max = 3.5
elif diff <= 4.0:
if debug: print(f"\t\t3.5 <= {diff} <= 4.0")
diff_min = 3.5
diff_max = 4.0
elif diff <= 4.5:
if debug: print(f"\t\t4.0 <= {diff} <= 4.5")
diff_min = 4.0
diff_max = 4.5
elif diff <= 5.0:
if debug: print(f"\t\t4.5 <= {diff} <= 5.0")
diff_min = 4.5
diff_max = 5.0
else:
if debug: print(f"\t\t{diff} -> no data")
diff_min = None
diff_max = None
return diff_min, diff_max
def dieta_response(response_esfuerzo, response_cumplimiento, debug=False):
# esfuerzo dieta:
# 0 (No data):
# No entiendo la calculadora, quiero menús tipo, cárgame 4|I: 2
# Iba a coger menús tipo, pero al final por precio no|D: 13
# No entiendo la calculadora, quiero menús tipo, cárgame 2|I: 3
# 1 (costó subir macros):
# Costó demasiado, súbeme macros|D: 28
# 2 (costó bajar macros):
# Costó demasiado, bájame macros|D: 42
# 3 (costó y me adapto a nuevos ajustes):
# Costó, pero me adapto a nuevos ajustes|C: 331
# 4 (no costó):
# No costó nada|A: 1504
# compromiso dieta:
# 0 (bien):
# al 70%|B|6: 564
# casi ©|A|9: 610
# Perfecta|A|10: 563
# 1 (regular):
# regular, me cuesta llegar|C|5: 57
# regular, me salto la dieta|C|4: 6
# 2 (mal):
# Nada, mantén mis macros|I|0: 123
esfuerzo_dieta_cluster = clustering_esfuerzo_dieta_response(response_esfuerzo, debug)
cumplimiento_dieta_cluster = clustering_cumplimiento_dieta_response(response_cumplimiento, debug)
if esfuerzo_dieta_cluster == 0:
dieta_bien = cumplimiento_dieta_cluster == 0
dieta_regular = cumplimiento_dieta_cluster == 1
dieta_mal = cumplimiento_dieta_cluster == 2
else:
dieta_bien = esfuerzo_dieta_cluster == 4 and cumplimiento_dieta_cluster == 0
dieta_regular = esfuerzo_dieta_cluster == 3 and cumplimiento_dieta_cluster == 1
dieta_mal = (esfuerzo_dieta_cluster == 2 or esfuerzo_dieta_cluster == 1) and cumplimiento_dieta_cluster == 2
if dieta_bien:
return 0
elif dieta_regular:
return 1
elif dieta_mal:
return 2
else:
return 3
def make_query(cluster_esfuerzo_dieta, cluster_objetivo, cluster_entrenamiento, cluster_cumplimiento_dieta,
cluster_compromiso, diff_peso_min, diff_peso_max,
basic_query=False):
if not basic_query:
query = [
{
'esfuerzoParaCumplirDieta':
{
'operator': 'in',
'value': cluster_esfuerzo_dieta,
}
},
{
'objetivo':
{
'operator': 'in',
'value': cluster_objetivo,
}
},
{
'cumplimientoEntrenamiento':
{
'operator': 'in',
'value': cluster_entrenamiento,
}
},
{
'cumplimientoDieta':
{
'operator': 'in',
'value': cluster_cumplimiento_dieta,
}
},
{
'compromiso':
{
'operator': 'in',
'value': cluster_compromiso,
}
},
{
'diferencia_peso':
{
'operator': '<=',
'value': diff_peso_max,
}
},
{
'diferencia_peso':
{
'operator': '>=',
'value': diff_peso_min,
}
}
]
else:
query = [
{
'objetivo':
{
'operator': 'in',
'value': cluster_objetivo,
}
},
{
'cumplimientoEntrenamiento':
{
'operator': 'in',
'value': cluster_entrenamiento,
}
},
{
'cumplimientoDieta':
{
'operator': 'in',
'value': cluster_cumplimiento_dieta,
}
},
]
if cluster_esfuerzo_dieta.lower() == 'costo subir macros'.lower() or cluster_esfuerzo_dieta.lower() == 'costo bajar macros'.lower():
# Remove diferencia peso
query.pop(6)
query.pop(5)
# Remove compromiso
query.pop(4)
# Remove cumplimiento dieta
query.pop(3)
# Remove cumplimiento entrenamiento
query.pop(2)
# Remove objetivo
query.pop(1)
elif cluster_esfuerzo_dieta.lower() == 'no data'.lower():
# Remove esfuerzo dieta
query.pop(0)
return query
|