Maximofn commited on
Commit
b732f11
·
1 Parent(s): 21368bb

docs(SRC): :rocket: First version of create all options notebook

Browse files
Files changed (1) hide show
  1. create_all_options_table.ipynb +707 -0
create_all_options_table.ipynb ADDED
@@ -0,0 +1,707 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "from input_options import (opciones_esfuerzo, opciones_objetivo, opciones_cumplimiento_entrenamiento,\n",
10
+ " opciones_cumplimiento_dieta, opciones_compromiso, diferencia_peso_options)\n",
11
+ "import pandas as pd\n",
12
+ "from tqdm import tqdm"
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": 2,
18
+ "metadata": {},
19
+ "outputs": [],
20
+ "source": [
21
+ "anterior_peso_list = list(range(50, 150, 2))\n",
22
+ "peso_actual_list = list(range(50, 150, 2))"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": 3,
28
+ "metadata": {},
29
+ "outputs": [],
30
+ "source": [
31
+ "dataframe = pd.DataFrame()"
32
+ ]
33
+ },
34
+ {
35
+ "cell_type": "code",
36
+ "execution_count": 4,
37
+ "metadata": {},
38
+ "outputs": [
39
+ {
40
+ "name": "stderr",
41
+ "output_type": "stream",
42
+ "text": [
43
+ "Creating dataframe: 99%|█████████▉| 6279720/6350400 [00:07<00:00, 823917.54it/s]"
44
+ ]
45
+ },
46
+ {
47
+ "name": "stdout",
48
+ "output_type": "stream",
49
+ "text": [
50
+ "6350400\n"
51
+ ]
52
+ },
53
+ {
54
+ "data": {
55
+ "text/html": [
56
+ "<div>\n",
57
+ "<style scoped>\n",
58
+ " .dataframe tbody tr th:only-of-type {\n",
59
+ " vertical-align: middle;\n",
60
+ " }\n",
61
+ "\n",
62
+ " .dataframe tbody tr th {\n",
63
+ " vertical-align: top;\n",
64
+ " }\n",
65
+ "\n",
66
+ " .dataframe thead th {\n",
67
+ " text-align: right;\n",
68
+ " }\n",
69
+ "</style>\n",
70
+ "<table border=\"1\" class=\"dataframe\">\n",
71
+ " <thead>\n",
72
+ " <tr style=\"text-align: right;\">\n",
73
+ " <th></th>\n",
74
+ " <th>anterior_peso</th>\n",
75
+ " <th>peso_actual</th>\n",
76
+ " <th>diferencia_peso</th>\n",
77
+ " <th>objetivo</th>\n",
78
+ " <th>esfuerzo</th>\n",
79
+ " <th>cumplimiento_entrenamiento</th>\n",
80
+ " <th>cumplimiento_dieta</th>\n",
81
+ " <th>compromiso</th>\n",
82
+ " </tr>\n",
83
+ " </thead>\n",
84
+ " <tbody>\n",
85
+ " <tr>\n",
86
+ " <th>0</th>\n",
87
+ " <td>60</td>\n",
88
+ " <td>60</td>\n",
89
+ " <td>0</td>\n",
90
+ " <td>definición (nada cambia)</td>\n",
91
+ " <td>No entiendo la calculadora, quiero menús tipo</td>\n",
92
+ " <td>Lo hice perfecto</td>\n",
93
+ " <td>al 70%</td>\n",
94
+ " <td>Bueno, pero mejorable</td>\n",
95
+ " </tr>\n",
96
+ " <tr>\n",
97
+ " <th>1</th>\n",
98
+ " <td>60</td>\n",
99
+ " <td>60</td>\n",
100
+ " <td>0</td>\n",
101
+ " <td>definición (nada cambia)</td>\n",
102
+ " <td>No entiendo la calculadora, quiero menús tipo</td>\n",
103
+ " <td>Lo hice perfecto</td>\n",
104
+ " <td>al 70%</td>\n",
105
+ " <td>Mal, pero a partir de ahora voy a por todas</td>\n",
106
+ " </tr>\n",
107
+ " <tr>\n",
108
+ " <th>2</th>\n",
109
+ " <td>60</td>\n",
110
+ " <td>60</td>\n",
111
+ " <td>0</td>\n",
112
+ " <td>definición (nada cambia)</td>\n",
113
+ " <td>No entiendo la calculadora, quiero menús tipo</td>\n",
114
+ " <td>Lo hice perfecto</td>\n",
115
+ " <td>al 70%</td>\n",
116
+ " <td>Mal, demasiado exigente</td>\n",
117
+ " </tr>\n",
118
+ " <tr>\n",
119
+ " <th>3</th>\n",
120
+ " <td>60</td>\n",
121
+ " <td>60</td>\n",
122
+ " <td>0</td>\n",
123
+ " <td>definición (nada cambia)</td>\n",
124
+ " <td>No entiendo la calculadora, quiero menús tipo</td>\n",
125
+ " <td>Lo hice perfecto</td>\n",
126
+ " <td>al 70%</td>\n",
127
+ " <td>Máximo</td>\n",
128
+ " </tr>\n",
129
+ " <tr>\n",
130
+ " <th>4</th>\n",
131
+ " <td>60</td>\n",
132
+ " <td>60</td>\n",
133
+ " <td>0</td>\n",
134
+ " <td>definición (nada cambia)</td>\n",
135
+ " <td>No entiendo la calculadora, quiero menús tipo</td>\n",
136
+ " <td>Lo hice perfecto</td>\n",
137
+ " <td>regular, me cuesta llegar</td>\n",
138
+ " <td>Bueno, pero mejorable</td>\n",
139
+ " </tr>\n",
140
+ " </tbody>\n",
141
+ "</table>\n",
142
+ "</div>"
143
+ ],
144
+ "text/plain": [
145
+ " anterior_peso peso_actual diferencia_peso objetivo \\\n",
146
+ "0 60 60 0 definición (nada cambia) \n",
147
+ "1 60 60 0 definición (nada cambia) \n",
148
+ "2 60 60 0 definición (nada cambia) \n",
149
+ "3 60 60 0 definición (nada cambia) \n",
150
+ "4 60 60 0 definición (nada cambia) \n",
151
+ "\n",
152
+ " esfuerzo cumplimiento_entrenamiento \\\n",
153
+ "0 No entiendo la calculadora, quiero menús tipo Lo hice perfecto \n",
154
+ "1 No entiendo la calculadora, quiero menús tipo Lo hice perfecto \n",
155
+ "2 No entiendo la calculadora, quiero menús tipo Lo hice perfecto \n",
156
+ "3 No entiendo la calculadora, quiero menús tipo Lo hice perfecto \n",
157
+ "4 No entiendo la calculadora, quiero menús tipo Lo hice perfecto \n",
158
+ "\n",
159
+ " cumplimiento_dieta compromiso \n",
160
+ "0 al 70% Bueno, pero mejorable \n",
161
+ "1 al 70% Mal, pero a partir de ahora voy a por todas \n",
162
+ "2 al 70% Mal, demasiado exigente \n",
163
+ "3 al 70% Máximo \n",
164
+ "4 regular, me cuesta llegar Bueno, pero mejorable "
165
+ ]
166
+ },
167
+ "execution_count": 4,
168
+ "metadata": {},
169
+ "output_type": "execute_result"
170
+ }
171
+ ],
172
+ "source": [
173
+ "rows_list = []\n",
174
+ "\n",
175
+ "num_combinations = len(anterior_peso_list) * len(peso_actual_list) * len(opciones_objetivo) * len(opciones_esfuerzo) * len(opciones_cumplimiento_entrenamiento) * len(opciones_cumplimiento_dieta) * len(opciones_compromiso)\n",
176
+ "progress_bar = tqdm(total=num_combinations, desc=\"Creating dataframe\")\n",
177
+ "\n",
178
+ "for anterior_peso in anterior_peso_list:\n",
179
+ " for peso_actual in peso_actual_list:\n",
180
+ " for objetivo in opciones_objetivo:\n",
181
+ " for esfuerzo in opciones_esfuerzo:\n",
182
+ " for cumplimiento_entrenamiento in opciones_cumplimiento_entrenamiento:\n",
183
+ " for cumplimiento_dieta in opciones_cumplimiento_dieta:\n",
184
+ " for compromiso in opciones_compromiso:\n",
185
+ " row = {\n",
186
+ " 'anterior_peso': anterior_peso,\n",
187
+ " 'peso_actual': peso_actual,\n",
188
+ " 'diferencia_peso': peso_actual - anterior_peso,\n",
189
+ " 'objetivo': objetivo[list(objetivo.keys())[0]]['text'],\n",
190
+ " 'esfuerzo': esfuerzo[list(esfuerzo.keys())[0]]['text'],\n",
191
+ " 'cumplimiento_entrenamiento': cumplimiento_entrenamiento[list(cumplimiento_entrenamiento.keys())[0]]['text'],\n",
192
+ " 'cumplimiento_dieta': cumplimiento_dieta[list(cumplimiento_dieta.keys())[0]]['text'],\n",
193
+ " 'compromiso': compromiso[list(compromiso.keys())[0]]['text']\n",
194
+ " }\n",
195
+ " rows_list.append(row)\n",
196
+ " progress_bar.update(1)\n",
197
+ "dataframe = pd.DataFrame(rows_list)\n",
198
+ "del rows_list\n",
199
+ "print(num_combinations)\n",
200
+ "dataframe.head()\n"
201
+ ]
202
+ },
203
+ {
204
+ "cell_type": "code",
205
+ "execution_count": 5,
206
+ "metadata": {},
207
+ "outputs": [
208
+ {
209
+ "data": {
210
+ "text/html": [
211
+ "<div>\n",
212
+ "<style scoped>\n",
213
+ " .dataframe tbody tr th:only-of-type {\n",
214
+ " vertical-align: middle;\n",
215
+ " }\n",
216
+ "\n",
217
+ " .dataframe tbody tr th {\n",
218
+ " vertical-align: top;\n",
219
+ " }\n",
220
+ "\n",
221
+ " .dataframe thead th {\n",
222
+ " text-align: right;\n",
223
+ " }\n",
224
+ "</style>\n",
225
+ "<table border=\"1\" class=\"dataframe\">\n",
226
+ " <thead>\n",
227
+ " <tr style=\"text-align: right;\">\n",
228
+ " <th></th>\n",
229
+ " <th>diferencia_peso</th>\n",
230
+ " </tr>\n",
231
+ " </thead>\n",
232
+ " <tbody>\n",
233
+ " <tr>\n",
234
+ " <th>0</th>\n",
235
+ " <td>-58</td>\n",
236
+ " </tr>\n",
237
+ " <tr>\n",
238
+ " <th>1</th>\n",
239
+ " <td>-56</td>\n",
240
+ " </tr>\n",
241
+ " <tr>\n",
242
+ " <th>2</th>\n",
243
+ " <td>-54</td>\n",
244
+ " </tr>\n",
245
+ " <tr>\n",
246
+ " <th>3</th>\n",
247
+ " <td>-52</td>\n",
248
+ " </tr>\n",
249
+ " <tr>\n",
250
+ " <th>4</th>\n",
251
+ " <td>-50</td>\n",
252
+ " </tr>\n",
253
+ " </tbody>\n",
254
+ "</table>\n",
255
+ "</div>"
256
+ ],
257
+ "text/plain": [
258
+ " diferencia_peso\n",
259
+ "0 -58\n",
260
+ "1 -56\n",
261
+ "2 -54\n",
262
+ "3 -52\n",
263
+ "4 -50"
264
+ ]
265
+ },
266
+ "execution_count": 5,
267
+ "metadata": {},
268
+ "output_type": "execute_result"
269
+ }
270
+ ],
271
+ "source": [
272
+ "diferencias_peso_list = dataframe['diferencia_peso'].unique()\n",
273
+ "diferencias_peso_list.sort()\n",
274
+ "diferencias_peso_dataframe = pd.DataFrame(diferencias_peso_list, columns=['diferencia_peso'])\n",
275
+ "diferencias_peso_dataframe.head()"
276
+ ]
277
+ },
278
+ {
279
+ "cell_type": "code",
280
+ "execution_count": 6,
281
+ "metadata": {},
282
+ "outputs": [
283
+ {
284
+ "data": {
285
+ "text/html": [
286
+ "<div>\n",
287
+ "<style scoped>\n",
288
+ " .dataframe tbody tr th:only-of-type {\n",
289
+ " vertical-align: middle;\n",
290
+ " }\n",
291
+ "\n",
292
+ " .dataframe tbody tr th {\n",
293
+ " vertical-align: top;\n",
294
+ " }\n",
295
+ "\n",
296
+ " .dataframe thead th {\n",
297
+ " text-align: right;\n",
298
+ " }\n",
299
+ "</style>\n",
300
+ "<table border=\"1\" class=\"dataframe\">\n",
301
+ " <thead>\n",
302
+ " <tr style=\"text-align: right;\">\n",
303
+ " <th></th>\n",
304
+ " <th>objetivo</th>\n",
305
+ " </tr>\n",
306
+ " </thead>\n",
307
+ " <tbody>\n",
308
+ " <tr>\n",
309
+ " <th>0</th>\n",
310
+ " <td>definición (nada cambia)</td>\n",
311
+ " </tr>\n",
312
+ " <tr>\n",
313
+ " <th>1</th>\n",
314
+ " <td>empezamos a coger volumen (cambia)</td>\n",
315
+ " </tr>\n",
316
+ " <tr>\n",
317
+ " <th>2</th>\n",
318
+ " <td>empezamos a coger volumen, en todo el cuerpo (...</td>\n",
319
+ " </tr>\n",
320
+ " <tr>\n",
321
+ " <th>3</th>\n",
322
+ " <td>empezamos a coger volumen, sobre todo tren inf...</td>\n",
323
+ " </tr>\n",
324
+ " <tr>\n",
325
+ " <th>4</th>\n",
326
+ " <td>empezamos a definir (cambia)</td>\n",
327
+ " </tr>\n",
328
+ " </tbody>\n",
329
+ "</table>\n",
330
+ "</div>"
331
+ ],
332
+ "text/plain": [
333
+ " objetivo\n",
334
+ "0 definición (nada cambia)\n",
335
+ "1 empezamos a coger volumen (cambia)\n",
336
+ "2 empezamos a coger volumen, en todo el cuerpo (...\n",
337
+ "3 empezamos a coger volumen, sobre todo tren inf...\n",
338
+ "4 empezamos a definir (cambia)"
339
+ ]
340
+ },
341
+ "execution_count": 6,
342
+ "metadata": {},
343
+ "output_type": "execute_result"
344
+ }
345
+ ],
346
+ "source": [
347
+ "objetivos_list = dataframe['objetivo'].unique()\n",
348
+ "objetivos_list.sort()\n",
349
+ "objetivos_dataframe = pd.DataFrame(objetivos_list, columns=['objetivo'])\n",
350
+ "objetivos_dataframe.head()\n"
351
+ ]
352
+ },
353
+ {
354
+ "cell_type": "code",
355
+ "execution_count": 7,
356
+ "metadata": {},
357
+ "outputs": [
358
+ {
359
+ "data": {
360
+ "text/html": [
361
+ "<div>\n",
362
+ "<style scoped>\n",
363
+ " .dataframe tbody tr th:only-of-type {\n",
364
+ " vertical-align: middle;\n",
365
+ " }\n",
366
+ "\n",
367
+ " .dataframe tbody tr th {\n",
368
+ " vertical-align: top;\n",
369
+ " }\n",
370
+ "\n",
371
+ " .dataframe thead th {\n",
372
+ " text-align: right;\n",
373
+ " }\n",
374
+ "</style>\n",
375
+ "<table border=\"1\" class=\"dataframe\">\n",
376
+ " <thead>\n",
377
+ " <tr style=\"text-align: right;\">\n",
378
+ " <th></th>\n",
379
+ " <th>esfuerzo</th>\n",
380
+ " </tr>\n",
381
+ " </thead>\n",
382
+ " <tbody>\n",
383
+ " <tr>\n",
384
+ " <th>0</th>\n",
385
+ " <td>Costó demasiado, bájame macros</td>\n",
386
+ " </tr>\n",
387
+ " <tr>\n",
388
+ " <th>1</th>\n",
389
+ " <td>Costó demasiado, súbeme macros</td>\n",
390
+ " </tr>\n",
391
+ " <tr>\n",
392
+ " <th>2</th>\n",
393
+ " <td>Costó, pero me adapto a nuevos ajustes</td>\n",
394
+ " </tr>\n",
395
+ " <tr>\n",
396
+ " <th>3</th>\n",
397
+ " <td>Iba a coger menús tipo, pero al final por prec...</td>\n",
398
+ " </tr>\n",
399
+ " <tr>\n",
400
+ " <th>4</th>\n",
401
+ " <td>No costó nada</td>\n",
402
+ " </tr>\n",
403
+ " </tbody>\n",
404
+ "</table>\n",
405
+ "</div>"
406
+ ],
407
+ "text/plain": [
408
+ " esfuerzo\n",
409
+ "0 Costó demasiado, bájame macros\n",
410
+ "1 Costó demasiado, súbeme macros\n",
411
+ "2 Costó, pero me adapto a nuevos ajustes\n",
412
+ "3 Iba a coger menús tipo, pero al final por prec...\n",
413
+ "4 No costó nada"
414
+ ]
415
+ },
416
+ "execution_count": 7,
417
+ "metadata": {},
418
+ "output_type": "execute_result"
419
+ }
420
+ ],
421
+ "source": [
422
+ "esfuerzos_list = dataframe['esfuerzo'].unique()\n",
423
+ "esfuerzos_list.sort()\n",
424
+ "esfuerzos_dataframe = pd.DataFrame(esfuerzos_list, columns=['esfuerzo'])\n",
425
+ "esfuerzos_dataframe.head()\n"
426
+ ]
427
+ },
428
+ {
429
+ "cell_type": "code",
430
+ "execution_count": 8,
431
+ "metadata": {},
432
+ "outputs": [
433
+ {
434
+ "data": {
435
+ "text/html": [
436
+ "<div>\n",
437
+ "<style scoped>\n",
438
+ " .dataframe tbody tr th:only-of-type {\n",
439
+ " vertical-align: middle;\n",
440
+ " }\n",
441
+ "\n",
442
+ " .dataframe tbody tr th {\n",
443
+ " vertical-align: top;\n",
444
+ " }\n",
445
+ "\n",
446
+ " .dataframe thead th {\n",
447
+ " text-align: right;\n",
448
+ " }\n",
449
+ "</style>\n",
450
+ "<table border=\"1\" class=\"dataframe\">\n",
451
+ " <thead>\n",
452
+ " <tr style=\"text-align: right;\">\n",
453
+ " <th></th>\n",
454
+ " <th>cumplimiento_entrenamiento</th>\n",
455
+ " </tr>\n",
456
+ " </thead>\n",
457
+ " <tbody>\n",
458
+ " <tr>\n",
459
+ " <th>0</th>\n",
460
+ " <td>Alárgame la rutina una semana más</td>\n",
461
+ " </tr>\n",
462
+ " <tr>\n",
463
+ " <th>1</th>\n",
464
+ " <td>He fallado algunos días, pero sí</td>\n",
465
+ " </tr>\n",
466
+ " <tr>\n",
467
+ " <th>2</th>\n",
468
+ " <td>Lesión importante</td>\n",
469
+ " </tr>\n",
470
+ " <tr>\n",
471
+ " <th>3</th>\n",
472
+ " <td>Lo hice perfecto</td>\n",
473
+ " </tr>\n",
474
+ " <tr>\n",
475
+ " <th>4</th>\n",
476
+ " <td>Lo hice prácticamente perfecto</td>\n",
477
+ " </tr>\n",
478
+ " </tbody>\n",
479
+ "</table>\n",
480
+ "</div>"
481
+ ],
482
+ "text/plain": [
483
+ " cumplimiento_entrenamiento\n",
484
+ "0 Alárgame la rutina una semana más\n",
485
+ "1 He fallado algunos días, pero sí\n",
486
+ "2 Lesión importante\n",
487
+ "3 Lo hice perfecto\n",
488
+ "4 Lo hice prácticamente perfecto"
489
+ ]
490
+ },
491
+ "execution_count": 8,
492
+ "metadata": {},
493
+ "output_type": "execute_result"
494
+ }
495
+ ],
496
+ "source": [
497
+ "cumplimiento_entrenamiento_list = dataframe['cumplimiento_entrenamiento'].unique()\n",
498
+ "cumplimiento_entrenamiento_list.sort()\n",
499
+ "cumplimiento_entrenamiento_dataframe = pd.DataFrame(cumplimiento_entrenamiento_list, columns=['cumplimiento_entrenamiento'])\n",
500
+ "cumplimiento_entrenamiento_dataframe.head()"
501
+ ]
502
+ },
503
+ {
504
+ "cell_type": "code",
505
+ "execution_count": 9,
506
+ "metadata": {},
507
+ "outputs": [
508
+ {
509
+ "data": {
510
+ "text/html": [
511
+ "<div>\n",
512
+ "<style scoped>\n",
513
+ " .dataframe tbody tr th:only-of-type {\n",
514
+ " vertical-align: middle;\n",
515
+ " }\n",
516
+ "\n",
517
+ " .dataframe tbody tr th {\n",
518
+ " vertical-align: top;\n",
519
+ " }\n",
520
+ "\n",
521
+ " .dataframe thead th {\n",
522
+ " text-align: right;\n",
523
+ " }\n",
524
+ "</style>\n",
525
+ "<table border=\"1\" class=\"dataframe\">\n",
526
+ " <thead>\n",
527
+ " <tr style=\"text-align: right;\">\n",
528
+ " <th></th>\n",
529
+ " <th>cumplimiento_dieta</th>\n",
530
+ " </tr>\n",
531
+ " </thead>\n",
532
+ " <tbody>\n",
533
+ " <tr>\n",
534
+ " <th>0</th>\n",
535
+ " <td>Nada, mantén mis macros</td>\n",
536
+ " </tr>\n",
537
+ " <tr>\n",
538
+ " <th>1</th>\n",
539
+ " <td>Perfecta</td>\n",
540
+ " </tr>\n",
541
+ " <tr>\n",
542
+ " <th>2</th>\n",
543
+ " <td>al 70%</td>\n",
544
+ " </tr>\n",
545
+ " <tr>\n",
546
+ " <th>3</th>\n",
547
+ " <td>casi perfecta</td>\n",
548
+ " </tr>\n",
549
+ " <tr>\n",
550
+ " <th>4</th>\n",
551
+ " <td>regular, me cuesta llegar</td>\n",
552
+ " </tr>\n",
553
+ " </tbody>\n",
554
+ "</table>\n",
555
+ "</div>"
556
+ ],
557
+ "text/plain": [
558
+ " cumplimiento_dieta\n",
559
+ "0 Nada, mantén mis macros\n",
560
+ "1 Perfecta\n",
561
+ "2 al 70%\n",
562
+ "3 casi perfecta\n",
563
+ "4 regular, me cuesta llegar"
564
+ ]
565
+ },
566
+ "execution_count": 9,
567
+ "metadata": {},
568
+ "output_type": "execute_result"
569
+ }
570
+ ],
571
+ "source": [
572
+ "cumplimiento_dieta_list = dataframe['cumplimiento_dieta'].unique()\n",
573
+ "cumplimiento_dieta_list.sort()\n",
574
+ "cumplimiento_dieta_dataframe = pd.DataFrame(cumplimiento_dieta_list, columns=['cumplimiento_dieta'])\n",
575
+ "cumplimiento_dieta_dataframe.head()\n"
576
+ ]
577
+ },
578
+ {
579
+ "cell_type": "code",
580
+ "execution_count": 10,
581
+ "metadata": {},
582
+ "outputs": [
583
+ {
584
+ "data": {
585
+ "text/html": [
586
+ "<div>\n",
587
+ "<style scoped>\n",
588
+ " .dataframe tbody tr th:only-of-type {\n",
589
+ " vertical-align: middle;\n",
590
+ " }\n",
591
+ "\n",
592
+ " .dataframe tbody tr th {\n",
593
+ " vertical-align: top;\n",
594
+ " }\n",
595
+ "\n",
596
+ " .dataframe thead th {\n",
597
+ " text-align: right;\n",
598
+ " }\n",
599
+ "</style>\n",
600
+ "<table border=\"1\" class=\"dataframe\">\n",
601
+ " <thead>\n",
602
+ " <tr style=\"text-align: right;\">\n",
603
+ " <th></th>\n",
604
+ " <th>compromiso</th>\n",
605
+ " </tr>\n",
606
+ " </thead>\n",
607
+ " <tbody>\n",
608
+ " <tr>\n",
609
+ " <th>0</th>\n",
610
+ " <td>Bueno, pero mejorable</td>\n",
611
+ " </tr>\n",
612
+ " <tr>\n",
613
+ " <th>1</th>\n",
614
+ " <td>Mal, demasiado exigente</td>\n",
615
+ " </tr>\n",
616
+ " <tr>\n",
617
+ " <th>2</th>\n",
618
+ " <td>Mal, pero a partir de ahora voy a por todas</td>\n",
619
+ " </tr>\n",
620
+ " <tr>\n",
621
+ " <th>3</th>\n",
622
+ " <td>Máximo</td>\n",
623
+ " </tr>\n",
624
+ " </tbody>\n",
625
+ "</table>\n",
626
+ "</div>"
627
+ ],
628
+ "text/plain": [
629
+ " compromiso\n",
630
+ "0 Bueno, pero mejorable\n",
631
+ "1 Mal, demasiado exigente\n",
632
+ "2 Mal, pero a partir de ahora voy a por todas\n",
633
+ "3 Máximo"
634
+ ]
635
+ },
636
+ "execution_count": 10,
637
+ "metadata": {},
638
+ "output_type": "execute_result"
639
+ }
640
+ ],
641
+ "source": [
642
+ "compromiso_list = dataframe['compromiso'].unique()\n",
643
+ "compromiso_list.sort()\n",
644
+ "compromiso_dataframe = pd.DataFrame(compromiso_list, columns=['compromiso'])\n",
645
+ "compromiso_dataframe.head()\n"
646
+ ]
647
+ },
648
+ {
649
+ "cell_type": "code",
650
+ "execution_count": 11,
651
+ "metadata": {},
652
+ "outputs": [
653
+ {
654
+ "ename": "ValueError",
655
+ "evalue": "This sheet is too large! Your sheet size is: 6350400, 8 Max sheet size is: 1048576, 16384",
656
+ "output_type": "error",
657
+ "traceback": [
658
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
659
+ "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
660
+ "Cell \u001b[0;32mIn[11], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m writer \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mExcelWriter(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mopciones_macros.xlsx\u001b[39m\u001b[38;5;124m'\u001b[39m, engine\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mopenpyxl\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Exportamos cada DataFrame a una hoja diferente\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m \u001b[43mdataframe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_excel\u001b[49m\u001b[43m(\u001b[49m\u001b[43mwriter\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msheet_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mTodas las combinaciones\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 6\u001b[0m diferencias_peso_dataframe\u001b[38;5;241m.\u001b[39mto_excel(writer, sheet_name\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mDiferencias de peso\u001b[39m\u001b[38;5;124m'\u001b[39m, index\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 7\u001b[0m objetivos_dataframe\u001b[38;5;241m.\u001b[39mto_excel(writer, sheet_name\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mObjetivos\u001b[39m\u001b[38;5;124m'\u001b[39m, index\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n",
661
+ "File \u001b[0;32m~/miniforge3/envs/macros_evolution_space/lib/python3.12/site-packages/pandas/util/_decorators.py:333\u001b[0m, in \u001b[0;36mdeprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 327\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m>\u001b[39m num_allow_args:\n\u001b[1;32m 328\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[1;32m 329\u001b[0m msg\u001b[38;5;241m.\u001b[39mformat(arguments\u001b[38;5;241m=\u001b[39m_format_argument_list(allow_args)),\n\u001b[1;32m 330\u001b[0m \u001b[38;5;167;01mFutureWarning\u001b[39;00m,\n\u001b[1;32m 331\u001b[0m stacklevel\u001b[38;5;241m=\u001b[39mfind_stack_level(),\n\u001b[1;32m 332\u001b[0m )\n\u001b[0;32m--> 333\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
662
+ "File \u001b[0;32m~/miniforge3/envs/macros_evolution_space/lib/python3.12/site-packages/pandas/core/generic.py:2417\u001b[0m, in \u001b[0;36mNDFrame.to_excel\u001b[0;34m(self, excel_writer, sheet_name, na_rep, float_format, columns, header, index, index_label, startrow, startcol, engine, merge_cells, inf_rep, freeze_panes, storage_options, engine_kwargs)\u001b[0m\n\u001b[1;32m 2404\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mpandas\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mio\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mformats\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mexcel\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m ExcelFormatter\n\u001b[1;32m 2406\u001b[0m formatter \u001b[38;5;241m=\u001b[39m ExcelFormatter(\n\u001b[1;32m 2407\u001b[0m df,\n\u001b[1;32m 2408\u001b[0m na_rep\u001b[38;5;241m=\u001b[39mna_rep,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 2415\u001b[0m inf_rep\u001b[38;5;241m=\u001b[39minf_rep,\n\u001b[1;32m 2416\u001b[0m )\n\u001b[0;32m-> 2417\u001b[0m \u001b[43mformatter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwrite\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2418\u001b[0m \u001b[43m \u001b[49m\u001b[43mexcel_writer\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2419\u001b[0m \u001b[43m \u001b[49m\u001b[43msheet_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msheet_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2420\u001b[0m \u001b[43m \u001b[49m\u001b[43mstartrow\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstartrow\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2421\u001b[0m \u001b[43m \u001b[49m\u001b[43mstartcol\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstartcol\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2422\u001b[0m \u001b[43m \u001b[49m\u001b[43mfreeze_panes\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfreeze_panes\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2423\u001b[0m \u001b[43m \u001b[49m\u001b[43mengine\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mengine\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2424\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2425\u001b[0m \u001b[43m \u001b[49m\u001b[43mengine_kwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mengine_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2426\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
663
+ "File \u001b[0;32m~/miniforge3/envs/macros_evolution_space/lib/python3.12/site-packages/pandas/io/formats/excel.py:931\u001b[0m, in \u001b[0;36mExcelFormatter.write\u001b[0;34m(self, writer, sheet_name, startrow, startcol, freeze_panes, engine, storage_options, engine_kwargs)\u001b[0m\n\u001b[1;32m 929\u001b[0m num_rows, num_cols \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdf\u001b[38;5;241m.\u001b[39mshape\n\u001b[1;32m 930\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m num_rows \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmax_rows \u001b[38;5;129;01mor\u001b[39;00m num_cols \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmax_cols:\n\u001b[0;32m--> 931\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 932\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThis sheet is too large! Your sheet size is: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnum_rows\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnum_cols\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 933\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMax sheet size is: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmax_rows\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmax_cols\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 934\u001b[0m )\n\u001b[1;32m 936\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m engine_kwargs \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 937\u001b[0m engine_kwargs \u001b[38;5;241m=\u001b[39m {}\n",
664
+ "\u001b[0;31mValueError\u001b[0m: This sheet is too large! Your sheet size is: 6350400, 8 Max sheet size is: 1048576, 16384"
665
+ ]
666
+ }
667
+ ],
668
+ "source": [
669
+ "# Creamos el ExcelWriter\n",
670
+ "writer = pd.ExcelWriter('opciones_macros.xlsx', engine='openpyxl')\n",
671
+ "\n",
672
+ "# Exportamos cada DataFrame a una hoja diferente\n",
673
+ "dataframe.to_excel(writer, sheet_name='Todas las combinaciones', index=False)\n",
674
+ "diferencias_peso_dataframe.to_excel(writer, sheet_name='Diferencias de peso', index=False)\n",
675
+ "objetivos_dataframe.to_excel(writer, sheet_name='Objetivos', index=False)\n",
676
+ "esfuerzos_dataframe.to_excel(writer, sheet_name='Esfuerzos', index=False)\n",
677
+ "cumplimiento_entrenamiento_dataframe.to_excel(writer, sheet_name='Cumplimiento entrenamiento', index=False)\n",
678
+ "cumplimiento_dieta_dataframe.to_excel(writer, sheet_name='Cumplimiento dieta', index=False)\n",
679
+ "compromiso_dataframe.to_excel(writer, sheet_name='Compromiso', index=False)\n",
680
+ "\n",
681
+ "# Guardamos y cerramos el archivo\n",
682
+ "writer.close()"
683
+ ]
684
+ }
685
+ ],
686
+ "metadata": {
687
+ "kernelspec": {
688
+ "display_name": "macros_evolution_space",
689
+ "language": "python",
690
+ "name": "python3"
691
+ },
692
+ "language_info": {
693
+ "codemirror_mode": {
694
+ "name": "ipython",
695
+ "version": 3
696
+ },
697
+ "file_extension": ".py",
698
+ "mimetype": "text/x-python",
699
+ "name": "python",
700
+ "nbconvert_exporter": "python",
701
+ "pygments_lexer": "ipython3",
702
+ "version": "3.12.8"
703
+ }
704
+ },
705
+ "nbformat": 4,
706
+ "nbformat_minor": 2
707
+ }