Last commit not found
import json | |
import logging | |
import os | |
import re | |
import time | |
from tempfile import TemporaryDirectory | |
from typing import List, Optional | |
import jsonlines | |
from huggingface_hub import CommitOperationAdd # type: ignore[import] | |
from huggingface_hub import Discussion, HfApi, HfFileSystem | |
from tqdm import tqdm | |
from .evaluation import METRICS | |
from .formatting import styled_error, styled_message, styled_warning | |
from .tasks_content import TASKS_PRETTY_REVERSE | |
from .utils import MD_LINK_PATTERN | |
class AlreadyExists(Exception): | |
pass | |
class SubmissionUploader: | |
"""Class for adding new files to a dataset on a Hub and opening a PR. | |
Heavily influenced by these amazing spaces: | |
* https://huggingface.co/spaces/safetensors/convert | |
* https://huggingface.co/spaces/gaia-benchmark/leaderboard | |
* https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard | |
""" | |
def __init__(self, dataset_id: str, private_dataset_id: str): | |
self._api = HfApi(token=os.environ["HF_TOKEN"]) | |
self._fs = HfFileSystem(token=os.environ["HF_TOKEN"]) | |
self._results_dataset_id = dataset_id | |
self._requests_dataset_id = private_dataset_id | |
def _get_previous_pr(self, pr_title: str) -> Optional[Discussion]: | |
"""Searches among discussions of the results dataset for a PR with the given title.""" | |
try: | |
discussions = self._api.get_repo_discussions(repo_id=self._results_dataset_id, repo_type="dataset") | |
except Exception: | |
return None | |
for discussion in discussions: | |
if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title: | |
return discussion | |
return None | |
def _upload_request( | |
self, | |
task_id: str, | |
model_folder: str, | |
model_name_pretty: str, | |
model_availability: str, | |
model_url: Optional[str], | |
urls: Optional[str], | |
context_size: str, | |
submitted_by: str, | |
contact_information: str, | |
comment: Optional[str], | |
pr_url: str, | |
temp_directory: str, | |
) -> List[CommitOperationAdd]: | |
"""Adds a file with metadata about the current request to the requests dataset.""" | |
request_metadata = { | |
"model_folder": model_folder, | |
"model_name_pretty": model_name_pretty, | |
"model_availability": model_availability, | |
"model_url": model_url, | |
"urls": urls, | |
"context_size": context_size, | |
"submitted_by": submitted_by, | |
"contact_information": contact_information, | |
"comment": comment, | |
"timestamp": time.time(), | |
"pr_url": pr_url, | |
} | |
with open(os.path.join(temp_directory, "request_metadata.json"), "w") as f: | |
json.dump(request_metadata, f) | |
num_requests_already_present = ( | |
len(self._fs.ls(f"datasets/{self._requests_dataset_id}/{task_id}/")) | |
if self._fs.isdir(f"datasets/{self._requests_dataset_id}/{task_id}/") | |
else 0 | |
) | |
commit_operations = [ | |
CommitOperationAdd( | |
path_in_repo=f"{task_id}/{num_requests_already_present}_{model_folder}.json", | |
path_or_fileobj=os.path.join(temp_directory, "request_metadata.json"), | |
) | |
] | |
return commit_operations | |
def _upload_predictions( | |
self, | |
task_id: str, | |
model_folder: str, | |
filenames: List[str], | |
) -> List[CommitOperationAdd]: | |
"""Adds all files with current model's predictions to the results dataset.""" | |
commit_operations = [ | |
CommitOperationAdd( | |
path_in_repo=f"{task_id}/predictions/{model_folder}/{os.path.basename(filename)}", | |
path_or_fileobj=filename, | |
) | |
for filename in filenames | |
] | |
return commit_operations | |
def _compute_metrics_for_predictions(self, task_id: str, filenames: List[str], temp_directory: str) -> None: | |
"""Computes metrics for each submitted file with the current model's predictions.""" | |
metrics_module = METRICS[task_id] | |
assert metrics_module is not None, f"Computing metrics for {task_id} is not supported." | |
metrics_module.reset() | |
open(os.path.join(temp_directory, "metrics.jsonl"), "w").close() | |
# compute the metrics for each submitted file | |
for filename in filenames: | |
with jsonlines.open(filename, "r") as reader: | |
for example in tqdm(reader, desc=f"Computing metrics for {os.path.basename(filename)}"): | |
metrics_module.add_batch( | |
predictions=[example["prediction"]], | |
references=[example["reference"]], | |
) | |
computed_metrics = metrics_module.compute() | |
metrics_module.reset() | |
with jsonlines.open(os.path.join(temp_directory, "metrics.jsonl"), "a") as writer: | |
writer.write(computed_metrics) | |
# aggregate the metrics over submitted files | |
with jsonlines.open(os.path.join(temp_directory, "metrics.jsonl"), "r") as reader: | |
metrics_results = [line for line in reader] | |
final_metrics_results = { | |
key: sum(entry[key] for entry in metrics_results) / len(metrics_results) for key in metrics_results[0] | |
} | |
with open(os.path.join(temp_directory, "final_metrics.json"), "w") as f: | |
json.dump(final_metrics_results, f) | |
def _upload_results( | |
self, | |
task_id: str, | |
model_folder: str, | |
model_name_pretty: str, | |
model_availability: str, | |
model_url: Optional[str], | |
urls: Optional[str], | |
context_size: str, | |
submitted_by: str, | |
temp_directory: str, | |
) -> List[CommitOperationAdd]: | |
"""Adds files with the current model's metrics values to the results dataset.""" | |
final_results = {} | |
with open(os.path.join(temp_directory, "final_metrics.json"), "r") as f: | |
metrics = json.load(f) | |
final_results.update(metrics) | |
final_results.update( | |
{ | |
"model_name": model_name_pretty, | |
"model_availability": model_availability, | |
"model_url": model_url, | |
"urls": urls, | |
"context_size": context_size, | |
"submitted_by": submitted_by, | |
} | |
) | |
with jsonlines.open(os.path.join(temp_directory, "final_results.jsonl"), "w") as writer: | |
writer.write(final_results) | |
return [ | |
CommitOperationAdd( | |
path_in_repo=f"{task_id}/results/{model_folder}.jsonl", | |
path_or_fileobj=os.path.join(temp_directory, "final_results.jsonl"), | |
) | |
] | |
def _verify_arguments( | |
self, | |
task_pretty: str, | |
model_folder: str, | |
model_name_pretty: str, | |
model_availability: str, | |
model_url: Optional[str], | |
urls: Optional[str], | |
context_size: str, | |
submitted_by: str, | |
contact_information: str, | |
comment: Optional[str], | |
filenames: Optional[List[str]], | |
): | |
"""Verifies that all necessary arguments are not None (and also runs other sanity checks).""" | |
assert task_pretty and task_pretty in TASKS_PRETTY_REVERSE, "Please, select one of the supported tasks." | |
assert model_folder, "Please, specify non-empty name for a directory with a model's results." | |
assert model_name_pretty, "Please, specify non-empty name for a model." | |
assert model_availability, "Please, specify non-empty information about a model's availability." | |
assert context_size, "Please, specify non-empty information about a model's context size." | |
try: | |
_ = int(context_size) | |
except: | |
raise ValueError("Please, specify a model's context size as an integer (e.g., 16000).") | |
if urls is not None and "," in urls: | |
urls_list = urls.split(",") | |
assert all( | |
re.match(rf"^{MD_LINK_PATTERN}$", url.strip()) for url in urls_list | |
), 'Please, use the following format for URLs: "[text1](link1), [text2](link2)"' | |
assert submitted_by, "Please, specify non-empty information about a submission's author(s)." | |
assert filenames, "Please, attach at least one file with predictions." | |
assert contact_information, "Please, fill in the field with contact information." | |
def upload_files( | |
self, | |
task_pretty: str, | |
model_folder: str, | |
model_name_pretty: str, | |
model_availability: str, | |
model_url: Optional[str], | |
urls: Optional[str], | |
context_size: str, | |
submitted_by: str, | |
contact_information: str, | |
comment: Optional[str], | |
filenames: Optional[List[str]], | |
force: bool = False, | |
) -> str: | |
try: | |
self._verify_arguments( | |
task_pretty=task_pretty, | |
model_folder=model_folder, | |
model_name_pretty=model_name_pretty, | |
model_availability=model_availability, | |
model_url=model_url, | |
urls=urls, | |
context_size=context_size, | |
submitted_by=submitted_by, | |
contact_information=contact_information, | |
comment=comment, | |
filenames=filenames, | |
) | |
pr_title = f"π New submission to {task_pretty} task: {model_name_pretty} with {context_size} context size from {submitted_by}" | |
logging.info(f"Start processing {pr_title}") | |
task_id = TASKS_PRETTY_REVERSE[task_pretty] | |
logging.info("Checking if this request has already been submitted...") | |
if not force: | |
if self._fs.isdir(f"datasets/{self._results_dataset_id}/{task_id}/predictions/{model_folder}"): | |
return styled_warning( | |
f"{model_folder} is already present in {self._results_dataset_id}, please, select another folder name." | |
) | |
prev_pr = self._get_previous_pr(pr_title) | |
if prev_pr is not None: | |
url = f"https://huggingface.co/datasets/{self._results_dataset_id}/discussions/{prev_pr.num}" | |
return styled_warning( | |
f"{self._results_dataset_id} already has an open PR for this submission: {url}." | |
) | |
logging.info("Processing predictions...") | |
predictions_commit_operations = self._upload_predictions( | |
task_id=task_id, | |
model_folder=model_folder, | |
filenames=filenames, | |
) | |
with TemporaryDirectory() as d: | |
logging.info("Computing metrics...") | |
self._compute_metrics_for_predictions(task_id=task_id, filenames=filenames, temp_directory=str(d)) | |
logging.info("Processing results...") | |
results_commit_operations = self._upload_results( | |
task_id=task_id, | |
model_folder=model_folder, | |
model_name_pretty=model_name_pretty, | |
model_availability=model_availability, | |
model_url=model_url, | |
urls=urls, | |
context_size=context_size, | |
submitted_by=submitted_by, | |
temp_directory=str(d), | |
) | |
logging.info("Creating commit to the results dataset...") | |
new_pr = self._api.create_commit( | |
repo_id=self._results_dataset_id, | |
operations=predictions_commit_operations + results_commit_operations, | |
commit_message=pr_title, | |
commit_description=f"""New submission to {task_pretty} task in ποΈ Long Code Arena benchmark!\n* Model name: {model_name_pretty}\n* Model availability: {model_availability}\n* Context Size: {context_size}\n* Relevant URLs: {urls}\n* Submitted By: {submitted_by}""", | |
create_pr=True, | |
repo_type="dataset", | |
) | |
logging.info("Creating commit to the requests dataset...") | |
request_commit_operations = self._upload_request( | |
task_id=task_id, | |
model_folder=model_folder, | |
temp_directory=str(d), | |
model_name_pretty=model_name_pretty, | |
model_availability=model_availability, | |
model_url=model_url, | |
urls=urls, | |
context_size=context_size, | |
submitted_by=submitted_by, | |
contact_information=contact_information, | |
comment=comment, | |
pr_url=new_pr.pr_url, | |
) | |
self._api.create_commit( | |
repo_id=self._requests_dataset_id, | |
operations=request_commit_operations, | |
commit_message=pr_title, | |
commit_description=f"""New submission to {task_pretty} task in ποΈ Long Code Arena benchmark!\n* Model name: {model_name_pretty}\n* Model availability: {model_availability}\n* Context Size: {context_size}\n* Relevant URLs: {urls}\n* Submitted By: {submitted_by}\n* PR: {new_pr.pr_url}\n* Contact information: {contact_information}\n* Comment: {comment}""", | |
create_pr=True, | |
repo_type="dataset", | |
) | |
return styled_message(f"π PR created at {new_pr.pr_url}.") | |
except Exception as e: | |
exception_msg = str(e) | |
if exception_msg and os.environ["PRIVATE_DATASET_ID"] in exception_msg: | |
exception_msg = exception_msg.replace(os.environ["PRIVATE_DATASET_ID"], "{private_dataset}") | |
if exception_msg: | |
return styled_error(exception_msg) | |
return styled_error("An exception occurred. Please, try again.") | |