Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
import torch.nn as nn | |
import math | |
# Set page config at the very beginning | |
st.set_page_config(page_title='Total Corneal Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide') | |
# Custom CSS to set background color to #000 for main app and navigation | |
st.markdown(""" | |
<style> | |
.stApp { | |
background-color: #000; | |
} | |
.stDeployButton { | |
display: none !important; | |
} | |
header[data-testid="stHeader"] { | |
background-color: #000; | |
} | |
.stDecoration { | |
background-color: #000 !important; | |
} | |
.stToolbar { | |
background-color: #000 !important; | |
} | |
#MainMenu { | |
background-color: #000 !important; | |
} | |
div[data-testid="stToolbar"] { | |
background-color: #000 !important; | |
} | |
button[kind="headerNoPadding"], button[data-testid="baseButton-headerNoPadding"], button[aria-haspopup="menu"] { | |
background-color: transparent !important; | |
} | |
.stApp > header { | |
background-color: transparent !important; | |
} | |
.stTextInput > div > div > input { | |
background-color: #333 !important; | |
color: white !important; | |
} | |
.stNumberInput > div > div > input { | |
background-color: #333 !important; | |
color: white !important; | |
} | |
.stTextInput > label, .stNumberInput > label { | |
color: white !important; | |
font-size: 24px !important; | |
} | |
[data-testid="stNumberInput"] { | |
margin-top: -15px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
class RegressionModel2(nn.Module): | |
def __init__(self, input_dim2, hidden_dim2, output_dim2): | |
super(RegressionModel2, self).__init__() | |
self.fc1 = nn.Linear(input_dim2, hidden_dim2) | |
self.relu1 = nn.ReLU() | |
self.fc2 = nn.Linear(hidden_dim2, output_dim2) | |
self.batch_norm1 = nn.BatchNorm1d(hidden_dim2) | |
def forward(self, x2): | |
out = self.fc1(x2) | |
out = self.relu1(out) | |
out = self.batch_norm1(out) | |
out = self.fc2(out) | |
return out | |
def load_models(): | |
model_j0 = RegressionModel2(3, 32, 1) | |
model_j0.load_state_dict(torch.load('j0_model-2.pt')) | |
model_j0.eval() | |
model_j45 = RegressionModel2(3, 32, 1) | |
model_j45.load_state_dict(torch.load('j45_model-2.pt')) | |
model_j45.eval() | |
return model_j0, model_j45 | |
model_j0, model_j45 = load_models() | |
def calculate_initial_j0_j45(magnitude, axis_deg): | |
axis_rad = math.radians(axis_deg) | |
j0 = magnitude * math.cos(2 * axis_rad) | |
j45 = magnitude * math.sin(2 * axis_rad) | |
return j0, j45 | |
def predict_new_j0_j45(age, aca_magnitude, aca_axis_deg): | |
initial_j0, initial_j45 = calculate_initial_j0_j45(aca_magnitude, aca_axis_deg) | |
input_data_j0 = torch.tensor([[age, aca_axis_deg, initial_j0]], dtype=torch.float32) | |
input_data_j45 = torch.tensor([[age, aca_axis_deg, initial_j45]], dtype=torch.float32) | |
with torch.no_grad(): | |
new_j0 = model_j0(input_data_j0).item() | |
new_j45 = model_j45(input_data_j45).item() | |
return new_j0, new_j45 | |
def main(): | |
#st.title('Total Corneal Astigmatism Prediction') | |
# Initialize session state for input values if not already present | |
if 'age' not in st.session_state: | |
st.session_state.age = None | |
if 'aca_magnitude' not in st.session_state: | |
st.session_state.aca_magnitude = None | |
if 'aca_axis' not in st.session_state: | |
st.session_state.aca_axis = None | |
# Input fields using session state | |
st.markdown('<p style="font-size: 20px; color: white; margin-bottom: 0px;">Enter Patient Age (18-90 Years):</p>', unsafe_allow_html=True) | |
#age = st.number_input('Enter Patient Age (18-90 Years):', | |
age = st.number_input('', | |
min_value=18.0, max_value=90.0, | |
value=st.session_state.age if st.session_state.age is not None else None, | |
step=0.1, | |
key='age') | |
st.markdown('<p style="font-size: 20px; color: white; margin-bottom: 0px;">Enter ACA Magnitude (0-10 Diopters):</p>', unsafe_allow_html=True) | |
#aca_magnitude = st.number_input('Enter ACA Magnitude (0-10 Diopters):', | |
aca_magnitude = st.number_input('', | |
min_value=0.0, max_value=10.0, | |
value=st.session_state.aca_magnitude if st.session_state.aca_magnitude is not None else None, | |
step=0.01, | |
key='aca_magnitude') | |
st.markdown('<p style="font-size: 20px; color: white; margin-bottom: 0px;">Enter ACA Axis (0-180 Degrees):</p>', unsafe_allow_html=True) | |
#aca_axis = st.number_input('Enter ACA Axis (0-180 Degrees):', | |
aca_axis = st.number_input('', | |
min_value=0.0, max_value=180.0, | |
value=st.session_state.aca_axis if st.session_state.aca_axis is not None else None, | |
step=0.1, | |
key='aca_axis') | |
if st.button('Predict!'): | |
if age is not None and aca_magnitude is not None and aca_axis is not None: | |
if 18 <= age <= 90 and 0 <= aca_magnitude <= 10 and 0 <= aca_axis <= 180: | |
# Calculate initial J0 and J45 | |
initial_j0, initial_j45 = calculate_initial_j0_j45(aca_magnitude, aca_axis) | |
# Predict new J0 and J45 using the models | |
new_j0, new_j45 = predict_new_j0_j45(age, aca_magnitude, aca_axis) | |
# Calculate predicted magnitude and axis | |
predicted_magnitude = math.sqrt(new_j0**2 + new_j45**2) | |
predicted_axis = 0.5 * math.degrees(math.atan2(new_j45, new_j0)) | |
if predicted_axis < 0: | |
predicted_axis += 180 | |
# Display results in green success boxes | |
st.success(f'Predicted Total Corneal Astigmatism Magnitude: {predicted_magnitude:.2f} D') | |
st.success(f'Predicted Total Corneal Astigmatism Axis: {predicted_axis:.1f}°') | |
# Display intermediate values for verification | |
#st.info(f''' | |
#Input ACA - Magnitude: {aca_magnitude:.2f} D, Axis: {aca_axis:.1f}° | |
#Initial J0: {initial_j0:.2f}, Initial J45: {initial_j45:.2f} | |
#Predicted J0: {new_j0:.2f}, Predicted J45: {new_j45:.2f} | |
#''') | |
# Additional debugging information (optional) | |
#if st.checkbox('Show detailed model inputs and outputs'): | |
#st.subheader('Debugging Information:') | |
#st.write(f"Input tensor for J0: {torch.tensor([[age, aca_axis, initial_j0]], dtype=torch.float32)}") | |
#st.write(f"Input tensor for J45: {torch.tensor([[age, aca_axis, initial_j45]], dtype=torch.float32)}") | |
#st.write(f"Raw J0 output: {new_j0}") | |
#st.write(f"Raw J45 output: {new_j45}") | |
else: | |
st.error('Please ensure all inputs are within the specified ranges.') | |
else: | |
st.error('Please fill in all input fields before predicting.') | |
if __name__ == '__main__': | |
main() |