File size: 1,678 Bytes
eefcc06 dec535e eefcc06 dec535e eefcc06 7bf4a3a eefcc06 7bf4a3a eefcc06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
import pandas as pd
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
class LaserPredictions(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(LaserPredictions, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim, output_dim)
self.batch_norm1 = nn.BatchNorm1d(hidden_dim)
def forward(self, x2):
out = self.fc1(x2)
out = self.relu1(out)
out = self.batch_norm1(out)
out = self.fc2(out)
return out
# Load the saved model state dictionary
model = LaserPredictions(3, 32, 3)
model.load_state_dict(torch.load('laser_prescription_model.pt'))
model.eval() # Set the model to evaluation mode
def predict(pre_op_sphere, pre_op_cylinder, pre_op_axis):
input_data = torch.tensor([[pre_op_sphere, pre_op_cylinder, pre_op_axis]], dtype=torch.float32)
with torch.no_grad():
predicted_prescription = model(input_data)
predicted_sphere = predicted_prescription[0][0].item()
predicted_cylinder = predicted_prescription[0][1].item()
predicted_axis = predicted_prescription[0][2].item()
return f"Predicted Laser Prescription:\nSphere: {predicted_sphere:.2f}\nCylinder: {predicted_cylinder:.2f}\nAxis: {predicted_axis:.2f}"
inputs = [
gr.Number(label="Pre-Op Sphere"),
gr.Number(label="Pre-Op Cylinder"),
gr.Number(label="Pre-Op Axis"),
]
output = gr.Textbox(label="Predicted Laser Prescription")
gr.Interface(fn=predict, inputs=inputs, outputs=output, title="Laser Prescription Prediction").launch() |