File size: 3,971 Bytes
eefcc06 61c910c 701c8cb 61c910c eefcc06 dec535e 61c910c eefcc06 61c910c eefcc06 61c910c eefcc06 ed6950c a2d6b1e 7560df9 f6a7710 5c3250e 5e04b41 c312d11 5e04b41 c312d11 7728d64 c312d11 29b6a50 7728d64 29b6a50 c312d11 7728d64 c312d11 12edc0e 9a85651 12edc0e 7560df9 a3e2a65 7560df9 ed6950c e076636 eefcc06 7bf4a3a eefcc06 7bf4a3a eefcc06 9d9cda7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import pandas as pd
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
class LaserPredictions(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(LaserPredictions, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim, output_dim)
self.batch_norm1 = nn.BatchNorm1d(hidden_dim)
def forward(self, x2):
out = self.fc1(x2)
out = self.relu1(out)
out = self.batch_norm1(out)
out = self.fc2(out)
return out
# Load the saved model state dictionary
model = LaserPredictions(6, 32, 3)
model.load_state_dict(torch.load('laser_prescription_model.pt'))
model.eval() # Set the model to evaluation mode
import gradio as gr
import pandas as pd
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
class LaserPredictions(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(LaserPredictions, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim, output_dim)
self.batch_norm1 = nn.BatchNorm1d(hidden_dim)
def forward(self, x2):
out = self.fc1(x2)
out = self.relu1(out)
out = self.batch_norm1(out)
out = self.fc2(out)
return out
# Load the saved model state dictionary
model = LaserPredictions(6, 32, 3)
model.load_state_dict(torch.load('laser_prescription_model.pt'))
model.eval() # Set the model to evaluation mode
def predict(pre_op_sphere, pre_op_cylinder, pre_op_axis):
# Use zero values for post-op features, as the target prescription is set to 0
post_op_values = [0.0, 0.0, 0.0]
# Combine pre-op and post-op values
input_data = [pre_op_sphere, pre_op_cylinder, pre_op_axis] + post_op_values
input_tensor = torch.tensor([input_data], dtype=torch.float32)
with torch.no_grad():
predicted_prescription = model(input_tensor)
predicted_sphere = predicted_prescription[0][0].item()
predicted_cylinder = predicted_prescription[0][1].item()
predicted_axis = predicted_prescription[0][2].item()
return f"Predicted Laser Prescription:\nSphere: {predicted_sphere:.2f}\nCylinder: {predicted_cylinder:.2f}\nAxis: {predicted_axis:.2f}"
css = """
.gradio-container {
background-color: #131517;
}
button {
background: #102534;
border: 1px solid #0c538c;
outline: none;
border-radius: 5px;
padding: 10px 20px;
font-size: 16px;
color: #fff;
}
button:hover {
cursor: pointer;
opacity: .7;
}
input {
background-color: #202428;
color: #fff;
border: 1px solid #2d353c;
border-radius: 5px;
padding: 10px 20px;
outline: none;
font-size: 16px;
}
::-webkit-input-placeholder {
color: #7a848f;
}
input:focus::placeholder {
color: transparent;
}
#component-0 {
background-color: #131517;
}
#component-1 {
background-color: #131517;
}
#component-2 {
background-color: #131517;
}
#component-3 {
background-color: #131517;
}
#component-4 {
background-color: #131517;
}
#component-5 {
background-color: #131517;
}
#component-6 {
background-color: #131517;
}
#component-7 {
background-color: #131517;
}
#component-8 {
background-color: #131517;
}
#component-9 {
background-color: #131517;
}
#component-10 {
background-color: #131517;
}
#component-13 {
background-color: #131517;
}
textarea {
background-color: #131517;
resize: none;
}
footer {
visibility: hidden;
}
"""
inputs = [
gr.Number(label="Pre-Op Sphere"),
gr.Number(label="Pre-Op Cylinder"),
gr.Number(label="Pre-Op Axis"),
]
output = gr.Textbox(label="Predicted Laser Prescription")
gr.Interface(fn=predict, inputs=inputs, outputs=output, title="Laser Treatment Prediction", css=css).launch(share=True) |