File size: 3,971 Bytes
eefcc06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61c910c
 
 
 
701c8cb
61c910c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eefcc06
 
 
dec535e
61c910c
 
 
 
 
 
 
eefcc06
61c910c
 
eefcc06
 
 
61c910c
eefcc06
 
ed6950c
a2d6b1e
 
 
7560df9
f6a7710
 
 
 
 
 
 
 
 
 
5c3250e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e04b41
c312d11
5e04b41
 
c312d11
 
 
 
 
 
7728d64
 
 
 
c312d11
 
29b6a50
 
7728d64
 
 
 
29b6a50
 
c312d11
 
7728d64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c312d11
 
 
12edc0e
 
 
9a85651
12edc0e
 
7560df9
a3e2a65
7560df9
ed6950c
e076636
eefcc06
7bf4a3a
 
 
eefcc06
7bf4a3a
eefcc06
9d9cda7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
import pandas as pd
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn

class LaserPredictions(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(LaserPredictions, self).__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Linear(hidden_dim, output_dim)
        self.batch_norm1 = nn.BatchNorm1d(hidden_dim)

    def forward(self, x2):
        out = self.fc1(x2)
        out = self.relu1(out)
        out = self.batch_norm1(out)
        out = self.fc2(out)
        return out

# Load the saved model state dictionary
model = LaserPredictions(6, 32, 3)
model.load_state_dict(torch.load('laser_prescription_model.pt'))
model.eval()  # Set the model to evaluation mode

import gradio as gr
import pandas as pd
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn

class LaserPredictions(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(LaserPredictions, self).__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Linear(hidden_dim, output_dim)
        self.batch_norm1 = nn.BatchNorm1d(hidden_dim)

    def forward(self, x2):
        out = self.fc1(x2)
        out = self.relu1(out)
        out = self.batch_norm1(out)
        out = self.fc2(out)
        return out

# Load the saved model state dictionary
model = LaserPredictions(6, 32, 3)
model.load_state_dict(torch.load('laser_prescription_model.pt'))
model.eval()  # Set the model to evaluation mode

def predict(pre_op_sphere, pre_op_cylinder, pre_op_axis):
    # Use zero values for post-op features, as the target prescription is set to 0
    post_op_values = [0.0, 0.0, 0.0]

    # Combine pre-op and post-op values
    input_data = [pre_op_sphere, pre_op_cylinder, pre_op_axis] + post_op_values
    input_tensor = torch.tensor([input_data], dtype=torch.float32)

    with torch.no_grad():
        predicted_prescription = model(input_tensor)

    predicted_sphere = predicted_prescription[0][0].item()
    predicted_cylinder = predicted_prescription[0][1].item()
    predicted_axis = predicted_prescription[0][2].item()

    return f"Predicted Laser Prescription:\nSphere: {predicted_sphere:.2f}\nCylinder: {predicted_cylinder:.2f}\nAxis: {predicted_axis:.2f}"

css = """
.gradio-container {
    background-color: #131517;
}

button {
  background: #102534;
  border: 1px solid #0c538c;
  outline: none;
  border-radius: 5px;
  padding: 10px 20px;
  font-size: 16px;
  color: #fff;
}


button:hover {
    cursor: pointer;
    opacity: .7;
}

input {
    background-color: #202428;
    color: #fff;
    border: 1px solid #2d353c;
    border-radius: 5px;
    padding: 10px 20px;
    outline: none;
    font-size: 16px;
}

::-webkit-input-placeholder {
    color: #7a848f;
}

input:focus::placeholder {
    color: transparent;
}

#component-0 {
    background-color: #131517;
}

#component-1 {
    background-color: #131517;
}

#component-2 {
    background-color: #131517;
}

#component-3 {
    background-color: #131517;
}

#component-4 {
    background-color: #131517;
}

#component-5 {
    background-color: #131517;
}

#component-6 {
    background-color: #131517;
}

#component-7 {
    background-color: #131517;
}

#component-8 {
    background-color: #131517;
}

#component-9 {
    background-color: #131517;
}

#component-10 {
    background-color: #131517;
}

#component-13 {
    background-color: #131517;
}

textarea {
    background-color: #131517;
    resize: none;
}

footer {
    visibility: hidden;
}
"""

inputs = [
    gr.Number(label="Pre-Op Sphere"),
    gr.Number(label="Pre-Op Cylinder"),
    gr.Number(label="Pre-Op Axis"),
]
output = gr.Textbox(label="Predicted Laser Prescription")

gr.Interface(fn=predict, inputs=inputs, outputs=output, title="Laser Treatment Prediction", css=css).launch(share=True)