Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForSequenceClassification
|
3 |
+
|
4 |
+
# Update this variable with your model name from Hugging Face Hub
|
5 |
+
MODEL_NAME = "model.pt"
|
6 |
+
|
7 |
+
# Load the model (no tokenizer needed)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
9 |
+
|
10 |
+
# Function to make predictions (replace with your actual prediction logic)
|
11 |
+
def predict(text):
|
12 |
+
"""
|
13 |
+
This function takes a text input, preprocesses it using the tokenizer,
|
14 |
+
makes a prediction using the loaded model, and returns the predicted output.
|
15 |
+
**Replace this function with your actual prediction logic.**
|
16 |
+
"""
|
17 |
+
# Modify this part to handle input processing if your model requires it
|
18 |
+
# (assuming your model doesn't need a tokenizer in this example)
|
19 |
+
inputs = text # Replace with preprocessing steps if necessary
|
20 |
+
|
21 |
+
with torch.no_grad():
|
22 |
+
outputs = model(**inputs)
|
23 |
+
predictions = torch.argmax(outputs.logits, dim=-1)
|
24 |
+
return predictions.item()
|
25 |
+
|
26 |
+
# Function to handle user input and make predictions (modify for your UI framework)
|
27 |
+
def handle_request(data):
|
28 |
+
"""
|
29 |
+
This function takes user input data (modify based on your UI framework),
|
30 |
+
extracts the relevant text, and calls the predict function to make a prediction.
|
31 |
+
"""
|
32 |
+
text = data["text"] # Assuming "text" is the key in your data dictionary
|
33 |
+
prediction = predict(text)
|
34 |
+
return {"prediction": prediction}
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
from fastapi import FastAPI
|
38 |
+
|
39 |
+
app = FastAPI()
|
40 |
+
|
41 |
+
@app.post("/predict")
|
42 |
+
async def predict_from_text(data: dict):
|
43 |
+
response = handle_request(data)
|
44 |
+
return response
|