Jfink09 commited on
Commit
446d568
·
verified ·
1 Parent(s): 08c6947

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -0
app.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModelForSequenceClassification
3
+
4
+ # Update this variable with your model name from Hugging Face Hub
5
+ MODEL_NAME = "model.pt"
6
+
7
+ # Load the model (no tokenizer needed)
8
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
9
+
10
+ # Function to make predictions (replace with your actual prediction logic)
11
+ def predict(text):
12
+ """
13
+ This function takes a text input, preprocesses it using the tokenizer,
14
+ makes a prediction using the loaded model, and returns the predicted output.
15
+ **Replace this function with your actual prediction logic.**
16
+ """
17
+ # Modify this part to handle input processing if your model requires it
18
+ # (assuming your model doesn't need a tokenizer in this example)
19
+ inputs = text # Replace with preprocessing steps if necessary
20
+
21
+ with torch.no_grad():
22
+ outputs = model(**inputs)
23
+ predictions = torch.argmax(outputs.logits, dim=-1)
24
+ return predictions.item()
25
+
26
+ # Function to handle user input and make predictions (modify for your UI framework)
27
+ def handle_request(data):
28
+ """
29
+ This function takes user input data (modify based on your UI framework),
30
+ extracts the relevant text, and calls the predict function to make a prediction.
31
+ """
32
+ text = data["text"] # Assuming "text" is the key in your data dictionary
33
+ prediction = predict(text)
34
+ return {"prediction": prediction}
35
+
36
+ if __name__ == "__main__":
37
+ from fastapi import FastAPI
38
+
39
+ app = FastAPI()
40
+
41
+ @app.post("/predict")
42
+ async def predict_from_text(data: dict):
43
+ response = handle_request(data)
44
+ return response