Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,131 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torch.optim as optim
|
6 |
-
from sklearn.metrics import r2_score
|
7 |
-
|
8 |
-
class RegressionModel2(nn.Module):
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
# Load the saved model state dictionary
|
24 |
-
model = RegressionModel2(3, 32, 1)
|
25 |
-
model.load_state_dict(torch.load('model.pt'))
|
26 |
-
model.eval() # Set the model to evaluation mode
|
27 |
-
|
28 |
-
# Define a function to make predictions
|
29 |
-
def predict_astigmatism(age, axis, aca):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
def main():
|
46 |
st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
|
@@ -75,40 +160,33 @@ def main():
|
|
75 |
padding: 10px 20px;
|
76 |
font-size: 16px;
|
77 |
}
|
|
|
|
|
|
|
|
|
78 |
</style>
|
79 |
""",
|
80 |
unsafe_allow_html=True
|
81 |
)
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
# </nav>
|
95 |
-
# <div class="text-content">
|
96 |
-
# <h2>Enter Variables</h2>
|
97 |
-
# <br>
|
98 |
-
# </div>
|
99 |
-
# </header>
|
100 |
-
# </body>
|
101 |
-
# """,
|
102 |
-
# unsafe_allow_html=True
|
103 |
-
# )
|
104 |
-
|
105 |
-
age = st.number_input('Enter Patient Age:', step=0.1)
|
106 |
-
aca_magnitude = st.number_input('Enter ACA Magnitude:', step=0.1)
|
107 |
-
aca_axis = st.number_input('Enter ACA Axis:', step=0.1)
|
108 |
|
109 |
if st.button('Predict!'):
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
112 |
|
113 |
if __name__ == '__main__':
|
114 |
-
main()
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import pandas as pd
|
3 |
+
# import torch
|
4 |
+
# import torch.nn as nn
|
5 |
+
# import torch.optim as optim
|
6 |
+
# from sklearn.metrics import r2_score
|
7 |
+
|
8 |
+
# class RegressionModel2(nn.Module):
|
9 |
+
# def __init__(self, input_dim2, hidden_dim2, output_dim2):
|
10 |
+
# super(RegressionModel2, self).__init__()
|
11 |
+
# self.fc1 = nn.Linear(input_dim2, hidden_dim2)
|
12 |
+
# self.relu1 = nn.ReLU()
|
13 |
+
# self.fc2 = nn.Linear(hidden_dim2, output_dim2)
|
14 |
+
# self.batch_norm1 = nn.BatchNorm1d(hidden_dim2)
|
15 |
+
|
16 |
+
# def forward(self, x2):
|
17 |
+
# out = self.fc1(x2)
|
18 |
+
# out = self.relu1(out)
|
19 |
+
# out = self.batch_norm1(out)
|
20 |
+
# out = self.fc2(out)
|
21 |
+
# return out
|
22 |
+
|
23 |
+
# # Load the saved model state dictionary
|
24 |
+
# model = RegressionModel2(3, 32, 1)
|
25 |
+
# model.load_state_dict(torch.load('model.pt'))
|
26 |
+
# model.eval() # Set the model to evaluation mode
|
27 |
+
|
28 |
+
# # Define a function to make predictions
|
29 |
+
# def predict_astigmatism(age, axis, aca):
|
30 |
+
# """
|
31 |
+
# This function takes three arguments (age, axis, aca) as input,
|
32 |
+
# converts them to a tensor, makes a prediction using the loaded model,
|
33 |
+
# and returns the predicted value.
|
34 |
+
# """
|
35 |
+
# # Prepare the input data
|
36 |
+
# data = torch.tensor([[age, axis, aca]], dtype=torch.float32)
|
37 |
+
|
38 |
+
# # Make prediction
|
39 |
+
# with torch.no_grad():
|
40 |
+
# prediction = model(data)
|
41 |
+
|
42 |
+
# # Return the predicted value
|
43 |
+
# return prediction.item()
|
44 |
+
|
45 |
+
# def main():
|
46 |
+
# st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
|
47 |
+
# st.write('<style>.st-emotion-cache-1dp5vir.ezrtsby1 { display: none; }</style>', unsafe_allow_html=True)
|
48 |
+
# st.write("""<style>.st-emotion-cache-czk5ss.e16jpq800 {display: none;}</style>""", unsafe_allow_html=True)
|
49 |
+
# st.markdown(
|
50 |
+
# """
|
51 |
+
# <style>
|
52 |
+
# .navbar {
|
53 |
+
# display: flex;
|
54 |
+
# justify-content: space-between;
|
55 |
+
# align-items: center;
|
56 |
+
# background-color: #f2f2f2;
|
57 |
+
# padding: 10px;
|
58 |
+
# }
|
59 |
+
# .logo img {
|
60 |
+
# height: 50px;
|
61 |
+
# }
|
62 |
+
# .menu {
|
63 |
+
# list-style-type: none;
|
64 |
+
# display: flex;
|
65 |
+
# }
|
66 |
+
# .menu li {
|
67 |
+
# margin-left: 20px;
|
68 |
+
# }
|
69 |
+
# .text-content {
|
70 |
+
# margin-top: 50px;
|
71 |
+
# text-align: center;
|
72 |
+
# }
|
73 |
+
# .button {
|
74 |
+
# margin-top: 20px;
|
75 |
+
# padding: 10px 20px;
|
76 |
+
# font-size: 16px;
|
77 |
+
# }
|
78 |
+
# </style>
|
79 |
+
# """,
|
80 |
+
# unsafe_allow_html=True
|
81 |
+
# )
|
82 |
+
|
83 |
+
# # st.markdown(
|
84 |
+
# # """
|
85 |
+
# # <body>
|
86 |
+
# # <header>
|
87 |
+
# # <nav class="navbar">
|
88 |
+
# # <div class="logo"><img src="iol.png" alt="Image description"></div>
|
89 |
+
# # <ul class="menu">
|
90 |
+
# # <li><a href="#">Home</a></li>
|
91 |
+
# # <li><a href="#">About</a></li>
|
92 |
+
# # <li><a href="#">Contact</a></li>
|
93 |
+
# # </ul>
|
94 |
+
# # </nav>
|
95 |
+
# # <div class="text-content">
|
96 |
+
# # <h2>Enter Variables</h2>
|
97 |
+
# # <br>
|
98 |
+
# # </div>
|
99 |
+
# # </header>
|
100 |
+
# # </body>
|
101 |
+
# # """,
|
102 |
+
# # unsafe_allow_html=True
|
103 |
+
# # )
|
104 |
+
|
105 |
+
# age = st.number_input('Enter Patient Age:', step=0.1)
|
106 |
+
# aca_magnitude = st.number_input('Enter ACA Magnitude:', step=0.1)
|
107 |
+
# aca_axis = st.number_input('Enter ACA Axis:', step=0.1)
|
108 |
+
|
109 |
+
# if st.button('Predict!'):
|
110 |
+
# astigmatism = predict_astigmatism(age, aca_axis, aca_magnitude)
|
111 |
+
# st.success(f'Predicted Total Corneal Astigmatism: {astigmatism:.4f}')
|
112 |
+
|
113 |
+
# if __name__ == '__main__':
|
114 |
+
# main()
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
|
130 |
def main():
|
131 |
st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
|
|
|
160 |
padding: 10px 20px;
|
161 |
font-size: 16px;
|
162 |
}
|
163 |
+
.error {
|
164 |
+
color: red;
|
165 |
+
font-weight: bold;
|
166 |
+
}
|
167 |
</style>
|
168 |
""",
|
169 |
unsafe_allow_html=True
|
170 |
)
|
171 |
|
172 |
+
age = st.number_input('Enter Patient Age:', min_value=0.0, max_value=120.0, step=0.1)
|
173 |
+
if age < 18 or age > 90:
|
174 |
+
st.markdown('<p class="error">Error: Age must be between 18 and 90.</p>', unsafe_allow_html=True)
|
175 |
+
|
176 |
+
aca_magnitude = st.number_input('Enter ACA Magnitude:', min_value=0.0, max_value=20.0, step=0.1)
|
177 |
+
if aca_magnitude < 0 or aca_magnitude > 10:
|
178 |
+
st.markdown('<p class="error">Error: ACA Magnitude must be between 0 and 10.</p>', unsafe_allow_html=True)
|
179 |
+
|
180 |
+
aca_axis = st.number_input('Enter ACA Axis:', min_value=0.0, max_value=180.0, step=0.1)
|
181 |
+
if aca_axis < 0 or aca_axis > 180:
|
182 |
+
st.markdown('<p class="error">Error: ACA Axis must be between 0 and 180.</p>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
if st.button('Predict!'):
|
185 |
+
if 18 <= age <= 90 and 0 <= aca_magnitude <= 10 and 0 <= aca_axis <= 180:
|
186 |
+
astigmatism = predict_astigmatism(age, aca_axis, aca_magnitude)
|
187 |
+
st.success(f'Predicted Total Corneal Astigmatism: {astigmatism:.4f}')
|
188 |
+
else:
|
189 |
+
st.error('Please correct the input errors before predicting.')
|
190 |
|
191 |
if __name__ == '__main__':
|
192 |
+
main()
|