Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,52 @@
|
|
|
|
1 |
import torch
|
2 |
-
|
3 |
-
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
"""
|
13 |
-
This function takes
|
14 |
-
makes a prediction using the loaded model,
|
15 |
-
|
16 |
"""
|
17 |
-
#
|
18 |
-
|
19 |
-
inputs = text # Replace with preprocessing steps if necessary
|
20 |
|
|
|
21 |
with torch.no_grad():
|
22 |
-
|
23 |
-
predictions = torch.argmax(outputs.logits, dim=-1)
|
24 |
-
return predictions.item()
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
"""
|
29 |
-
This function takes user input data (modify based on your UI framework),
|
30 |
-
extracts the relevant text, and calls the predict function to make a prediction.
|
31 |
-
"""
|
32 |
-
text = data["text"] # Assuming "text" is the key in your data dictionary
|
33 |
-
prediction = predict(text)
|
34 |
-
return {"prediction": prediction}
|
35 |
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
-
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
return response
|
|
|
1 |
+
import streamlit as st
|
2 |
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
# Define your model architecture here (same as before)
|
6 |
+
class RegressionModel2(nn.Module):
|
7 |
+
def __init__(self, input_dim2, hidden_dim2, output_dim2):
|
8 |
+
super(RegressionModel2, self).__init__()
|
9 |
+
self.fc1 = nn.Linear(input_dim2, hidden_dim2)
|
10 |
+
self.relu1 = nn.ReLU() # ReLU activation function
|
11 |
+
self.fc2 = nn.Linear(hidden_dim2, output_dim2)
|
12 |
+
self.batch_norm1 = nn.BatchNorm1d(hidden_dim2) # Batch normalization
|
13 |
+
|
14 |
+
def forward(self, x2):
|
15 |
+
out = self.fc1(x2)
|
16 |
+
out = self.relu1(out)
|
17 |
+
out = self.batch_norm1(out)
|
18 |
+
out = self.fc2(out)
|
19 |
+
return out
|
20 |
+
|
21 |
+
# Load your saved model state dictionary (assuming 'model.pt' is uploaded)
|
22 |
+
model2 = RegressionModel2(input_dim2, hidden_dim2, output_dim2)
|
23 |
+
model2.load_state_dict(torch.load('model.pt'))
|
24 |
+
model2.eval() # Set the model to evaluation mode
|
25 |
+
|
26 |
+
def predict(age, aca, axis):
|
27 |
"""
|
28 |
+
This function takes three arguments (age, axis, aca) as input,
|
29 |
+
prepares the data, makes a prediction using the loaded model,
|
30 |
+
and returns the predicted value.
|
31 |
"""
|
32 |
+
# Prepare the input data
|
33 |
+
data = torch.tensor([[age, aca, axis]], dtype=torch.float32)
|
|
|
34 |
|
35 |
+
# Make prediction
|
36 |
with torch.no_grad():
|
37 |
+
prediction = model2(data)
|
|
|
|
|
38 |
|
39 |
+
# Return the predicted value
|
40 |
+
return prediction.item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Streamlit App
|
43 |
+
st.title("Astigmatism Prediction App")
|
44 |
+
st.write("Enter the patient's information:")
|
45 |
|
46 |
+
age = st.number_input("Age", min_value=0)
|
47 |
+
aca = st.number_input("ACA Magnitude", min_value=0)
|
48 |
+
axis = st.number_input("ACA Axis", min_value=0)
|
49 |
|
50 |
+
if st.button("Predict"):
|
51 |
+
predicted_value = predict(age, aca, axis)
|
52 |
+
st.write(f"Predicted Astigmatism Value: {predicted_value}")
|
|