Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,17 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
import torch
|
3 |
import torch.nn as nn
|
|
|
|
|
4 |
|
5 |
-
# Define your model architecture here (same as before)
|
6 |
class RegressionModel2(nn.Module):
|
7 |
def __init__(self, input_dim2, hidden_dim2, output_dim2):
|
8 |
super(RegressionModel2, self).__init__()
|
9 |
self.fc1 = nn.Linear(input_dim2, hidden_dim2)
|
10 |
-
self.relu1 = nn.ReLU()
|
11 |
self.fc2 = nn.Linear(hidden_dim2, output_dim2)
|
12 |
-
self.batch_norm1 = nn.BatchNorm1d(hidden_dim2)
|
13 |
|
14 |
def forward(self, x2):
|
15 |
out = self.fc1(x2)
|
@@ -18,39 +20,81 @@ class RegressionModel2(nn.Module):
|
|
18 |
out = self.fc2(out)
|
19 |
return out
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
output_dim2 = 1
|
24 |
-
|
25 |
-
# Load your saved model state dictionary (assuming 'model.pt' is uploaded)
|
26 |
-
model2 = RegressionModel2(input_dim2, hidden_dim2, output_dim2)
|
27 |
model2.load_state_dict(torch.load('model.pt'))
|
28 |
-
model2.eval()
|
29 |
-
|
30 |
-
def
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
+
import torch.optim as optim
|
6 |
+
from sklearn.metrics import r2_score
|
7 |
|
|
|
8 |
class RegressionModel2(nn.Module):
|
9 |
def __init__(self, input_dim2, hidden_dim2, output_dim2):
|
10 |
super(RegressionModel2, self).__init__()
|
11 |
self.fc1 = nn.Linear(input_dim2, hidden_dim2)
|
12 |
+
self.relu1 = nn.ReLU()
|
13 |
self.fc2 = nn.Linear(hidden_dim2, output_dim2)
|
14 |
+
self.batch_norm1 = nn.BatchNorm1d(hidden_dim2)
|
15 |
|
16 |
def forward(self, x2):
|
17 |
out = self.fc1(x2)
|
|
|
20 |
out = self.fc2(out)
|
21 |
return out
|
22 |
|
23 |
+
# Load the trained model
|
24 |
+
model2 = RegressionModel2(3, 32, 1)
|
|
|
|
|
|
|
|
|
25 |
model2.load_state_dict(torch.load('model.pt'))
|
26 |
+
model2.eval()
|
27 |
+
|
28 |
+
def predict_astigmatism(age, aca_magnitude, aca_axis):
|
29 |
+
input_data = torch.tensor([[age, aca_magnitude, aca_axis]], dtype=torch.float32)
|
30 |
+
output = model2(input_data)
|
31 |
+
return output.item()
|
32 |
+
|
33 |
+
def main():
|
34 |
+
st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
|
35 |
+
st.markdown(
|
36 |
+
"""
|
37 |
+
<style>
|
38 |
+
.navbar {
|
39 |
+
display: flex;
|
40 |
+
justify-content: space-between;
|
41 |
+
align-items: center;
|
42 |
+
background-color: #f2f2f2;
|
43 |
+
padding: 10px;
|
44 |
+
}
|
45 |
+
.logo img {
|
46 |
+
height: 50px;
|
47 |
+
}
|
48 |
+
.menu {
|
49 |
+
list-style-type: none;
|
50 |
+
display: flex;
|
51 |
+
}
|
52 |
+
.menu li {
|
53 |
+
margin-left: 20px;
|
54 |
+
}
|
55 |
+
.text-content {
|
56 |
+
margin-top: 50px;
|
57 |
+
text-align: center;
|
58 |
+
}
|
59 |
+
.button {
|
60 |
+
margin-top: 20px;
|
61 |
+
padding: 10px 20px;
|
62 |
+
font-size: 16px;
|
63 |
+
}
|
64 |
+
</style>
|
65 |
+
""",
|
66 |
+
unsafe_allow_html=True
|
67 |
+
)
|
68 |
+
|
69 |
+
st.markdown(
|
70 |
+
"""
|
71 |
+
<body>
|
72 |
+
<header>
|
73 |
+
<nav class="navbar">
|
74 |
+
<div class="logo"><img src="iol.png" alt="Image description"></div>
|
75 |
+
<ul class="menu">
|
76 |
+
<li><a href="#">Home</a></li>
|
77 |
+
<li><a href="#">About</a></li>
|
78 |
+
<li><a href="#">Contact</a></li>
|
79 |
+
</ul>
|
80 |
+
</nav>
|
81 |
+
<div class="text-content">
|
82 |
+
<h2>Enter Variables</h2>
|
83 |
+
<br>
|
84 |
+
</div>
|
85 |
+
</header>
|
86 |
+
</body>
|
87 |
+
""",
|
88 |
+
unsafe_allow_html=True
|
89 |
+
)
|
90 |
+
|
91 |
+
age = st.number_input('Enter Patient Age:', min_value=0, step=1)
|
92 |
+
aca_magnitude = st.number_input('Enter ACA Magnitude:', min_value=0.0, step=0.1)
|
93 |
+
aca_axis = st.number_input('Enter ACA Axis:', min_value=0, max_value=180, step=1)
|
94 |
+
|
95 |
+
if st.button('Predict!'):
|
96 |
+
astigmatism = predict_astigmatism(age, aca_magnitude, aca_axis)
|
97 |
+
st.success(f'Predicted Astigmatism: {astigmatism:.4f}')
|
98 |
+
|
99 |
+
if __name__ == '__main__':
|
100 |
+
main()
|