Spaces:
Runtime error
Runtime error
File size: 37,610 Bytes
3c1a832 e8aa909 3c1a832 1e69bd6 3c1a832 0f61c92 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 0f61c92 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 0f61c92 3c1a832 e8aa909 3c1a832 e8aa909 3c1a832 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Protein binding kinetics\n",
"\n",
"The aim of these posts is to explore protein and ligand binding kinetics and how they can be calculated. \n",
"\n",
"We will use python to derive and visualization of steady-state concentration laws. \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Monomer - Dimer kinetics\n",
"\n",
"Lets start with the simple example of dimer formation from two identical protomers:\n",
"\n",
"$$\n",
"\\ce{P1 + P1 <=>[k_{on}][k_{off}] P2}\n",
"$$\n",
"\n",
"From the kinetic scheme above, we can write down the differential equations describing this system. These differential equations tell us how the concentrations of the reaction (in this case dimerization) change in time. \n",
"\n",
"$$\n",
"\\frac{\\partial [P_1]}{\\partial t} = - 2 k_{on} [P_1][P_1] + 2 k_{off} [P_2]\n",
"$$\n",
"\n",
"$$\n",
"\\frac{\\partial [P_2]}{\\partial t} = k_{on} [P_1][P_1] - k_{off} [P_2]\n",
"$$\n",
"\n",
"Where square brackets are used to indicate the concentration of the species, ie $[P_1]$ is the concentration of the monomer at a given time point $t$.\n",
"\n",
"To sanity check our results, we can multiply the second equation with -2, such that both right-hand sides become equal. We then find that:\n",
"\n",
"$$\n",
"\\frac{\\partial [P_1]}{\\partial t} = - 2 \\frac{\\partial [P_2]}{\\partial t}\n",
"$$\n",
"\n",
"When reading the equation above, for the equality to hold true, we find that the dimer $P_2$ must appear at _half_ the rate at which the monomer $P_1$ disappears. Cross-checking this with our chemical intuition this makes sense, since two monomers are required to make one dimer. \n",
"\n",
"In order to now find which concentrations of monomer and dimer are formed given how much protomer is in the tube, we need three more pieces of information. \n",
"\n",
"First, we are looking for the concentration of the monomer and dimer at _steady-state_: the system has reached equillibrium and no more changes in the concentration of either the monomer or the dimer occur. This means we can set both differential equations to zero. \n",
"\n",
"Second, we realize that the total amount of protomer in the tube never goes up or down; its either monomer or as one of the protomers in a dimer. The total amount of protomer is thus:\n",
"\n",
"$$\n",
"[P_T] = [P_1] + 2[P_2]\n",
"$$\n",
"\n",
"Since extinction coefficients are additive ($\\epsilon_{P_2} = 2\\epsilon_{P_1}$) the total protomer concentration can be measured directly by UV-VIS spectroscopy. \n",
"\n",
"Third, we need to have some value for the forward $k_{on}$ and backward rates $k_{off}$. These rates describe how fast the reaction takes place, but at the moment we are only interested in the steady-state concentrations. We can define a single new quantity which depends on the ratio of the forward and backward rates:\n",
"\n",
"$$\n",
"K_d = \\frac{k_{off}}{k_{on}}\n",
"$$\n",
"\n",
"If we look at our differential equations, the left-hand side describes the change of concentration of the monomer over time. The units are therefore molar per second ($M s^{-1}$). To make the units match on the left and right-hand side, we can deduce that the units of $k_{on}$ must be $M^{-1} s^{-1}$. Similarly, the units of $k_{off}$ are $s^{-1}$. From this unit analysis, we can see that the lifetime or off rate from a complex is independent of concentratation and we can recognize $K_d$ as the dissociation constant with units $M$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now use [sympy](https://www.sympy.org/en/index.html) to do some mathematics and figure out what the steady-state concentrations are."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import sympy as sp\n",
"\n",
"P1, P2, PT, k_on, k_off, kD = sp.symbols(\"P_1 P_2 P_T k_on k_off k_D\", positive=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we can solve the system of equations as we defined them above. Because of steady-state conditions, the differential equations are zero. We only use one here because the first is just the second multiplied by a constant factor, and thus does now have any additional information. To input equations into `sympy`, we must set the right hand side to zero and input the resulting left hand side:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{P_1: sqrt(k_D)*sqrt(8*P_T + k_D)/4 - k_D/4,\n",
" P_2: P_T/2 - sqrt(k_D)*sqrt(8*P_T + k_D)/8 + k_D/8,\n",
" k_off: k_D*k_on}]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol = sp.solve(\n",
" [\n",
" -2 * k_on * P1 * P1 + 2 * k_off * P2,\n",
" P1 + 2 * P2 - PT,\n",
" (k_off / k_on) - kD,\n",
" ],\n",
" [P1, P2, k_on, k_off],\n",
" dict=True,\n",
")\n",
"sol"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This returns a single solution, because we have told `sympy` that all input symbols are positive. We can have a look at the solution for the concentration of the dimer:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\frac{P_{T}}{2} - \\frac{\\sqrt{k_{D}} \\sqrt{8 P_{T} + k_{D}}}{8} + \\frac{k_{D}}{8}$"
],
"text/plain": [
"P_T/2 - sqrt(k_D)*sqrt(8*P_T + k_D)/8 + k_D/8"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol[0][P2]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can see that indeed the solution only depends on the dissociation constant $K_D$, and not the individual rates and indeed the 'mass balance' equation still holds ($P_1 + 2P_2 = P_T$), excercise for the reader."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, lets use [solara](https://solara.dev/) to quickly make an interactive component so that we can easily calculate the monomer and dimer concentrations, given a total protomer concentration $P_T$ and the dissociation constant. \n",
"\n",
"First, we take the symbolic solutions from `sympy` and lambdify them so that we can input numbers and calculate the output:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"solve_for = [P1, P2]\n",
"inputs = [PT, kD]\n",
"\n",
"lambdas = {s: sp.lambdify(inputs, sol[0][s]) for s in solve_for}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we make a `solara` component, where a user can input the values for $P_T$ and $K_{D}$ and directly obtain $P_1$ and $P_2$ at steady-state:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7b7432b1958f4bdb91256f7c93718220",
"version_major": 2,
"version_minor": 0
},
"text/html": [
"Cannot show widget. You probably want to rerun the code cell above (<i>Click in the code cell, and press Shift+Enter <kbd>⇧</kbd>+<kbd>↩</kbd></i>)."
],
"text/plain": [
"Cannot show ipywidgets in text"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import solara\n",
"\n",
"@solara.component\n",
"def Page():\n",
" PT = solara.use_reactive(10.)\n",
" kD = solara.use_reactive(1.)\n",
"\n",
" ans = {k: ld(PT.value, kD.value) for k, ld in lambdas.items()}\n",
"\n",
" solara.InputFloat('PT', value=PT)\n",
" solara.InputFloat('kD', value=kD)\n",
"\n",
" for k, v in ans.items():\n",
" solara.Text(f'{k.name}: {v}')\n",
"\n",
"Page()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that the values are all unitless, so if we enter a dissociation constant of 1 $\\mu M$, the concentration $P_T$ should also be given in $\\mu M$, and the outputs are then $\\mu M$ as well. \n",
"\n",
"This little widget now tells us that if the monomer concentration if 10 times over the value of $k_D$, in the steady-state equillibrium one out of three species is still a monomer!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Lets try if we can visualize the ratio of dimer to monomer over a larger range of concentrations. To do so we evalulate the monomer/dimer concentrations over a range spanning from 0.1 $k_D$ to 1000 $k_D$. "
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>PT</th>\n",
" <th>P_1</th>\n",
" <th>P_2</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.100000</td>\n",
" <td>0.921311</td>\n",
" <td>0.078689</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.109750</td>\n",
" <td>0.915248</td>\n",
" <td>0.084752</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.120450</td>\n",
" <td>0.908825</td>\n",
" <td>0.091175</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.132194</td>\n",
" <td>0.902035</td>\n",
" <td>0.097965</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.145083</td>\n",
" <td>0.894871</td>\n",
" <td>0.105129</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" PT P_1 P_2\n",
"0 0.100000 0.921311 0.078689\n",
"1 0.109750 0.915248 0.084752\n",
"2 0.120450 0.908825 0.091175\n",
"3 0.132194 0.902035 0.097965\n",
"4 0.145083 0.894871 0.105129"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"\n",
"# create a new function which calculates total molarity (monomer + dimer)\n",
"ld_total = sp.lambdify(inputs, sol[0][P1] + sol[0][P2])\n",
"\n",
"# create a vector of PT values ranging from 0.1 times kD to 1000 times kD\n",
"PT_values = np.logspace(-1, 3, endpoint=True, num=100)\n",
"ans = {k: ld(PT_values, 1) / ld_total(PT_values, 1) for k, ld in lambdas.items()}\n",
"\n",
"# put the results in a dataframe, together with input PT values\n",
"df = pd.DataFrame(dict(PT=PT_values) | {k.name: v for k, v in ans.items()})\n",
"\n",
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The resulting values are _fractions_ of monomer and dimer respectively, rather than their concentrations. We can plot the results with `altair`, adapting the [gallery example](https://altair-viz.github.io/gallery/multiline_tooltip_standard.html#gallery-multiline-tooltip-standard) for a multi-line tooltip graph. "
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"<style>\n",
" #altair-viz-3a30d2050bb04b3bbbb1e571718d97a1.vega-embed {\n",
" width: 100%;\n",
" display: flex;\n",
" }\n",
"\n",
" #altair-viz-3a30d2050bb04b3bbbb1e571718d97a1.vega-embed details,\n",
" #altair-viz-3a30d2050bb04b3bbbb1e571718d97a1.vega-embed details summary {\n",
" position: relative;\n",
" }\n",
"</style>\n",
"<div id=\"altair-viz-3a30d2050bb04b3bbbb1e571718d97a1\"></div>\n",
"<script type=\"text/javascript\">\n",
" var VEGA_DEBUG = (typeof VEGA_DEBUG == \"undefined\") ? {} : VEGA_DEBUG;\n",
" (function(spec, embedOpt){\n",
" let outputDiv = document.currentScript.previousElementSibling;\n",
" if (outputDiv.id !== \"altair-viz-3a30d2050bb04b3bbbb1e571718d97a1\") {\n",
" outputDiv = document.getElementById(\"altair-viz-3a30d2050bb04b3bbbb1e571718d97a1\");\n",
" }\n",
" const paths = {\n",
" \"vega\": \"https://cdn.jsdelivr.net/npm/vega@5?noext\",\n",
" \"vega-lib\": \"https://cdn.jsdelivr.net/npm/vega-lib?noext\",\n",
" \"vega-lite\": \"https://cdn.jsdelivr.net/npm/[email protected]?noext\",\n",
" \"vega-embed\": \"https://cdn.jsdelivr.net/npm/vega-embed@6?noext\",\n",
" };\n",
"\n",
" function maybeLoadScript(lib, version) {\n",
" var key = `${lib.replace(\"-\", \"\")}_version`;\n",
" return (VEGA_DEBUG[key] == version) ?\n",
" Promise.resolve(paths[lib]) :\n",
" new Promise(function(resolve, reject) {\n",
" var s = document.createElement('script');\n",
" document.getElementsByTagName(\"head\")[0].appendChild(s);\n",
" s.async = true;\n",
" s.onload = () => {\n",
" VEGA_DEBUG[key] = version;\n",
" return resolve(paths[lib]);\n",
" };\n",
" s.onerror = () => reject(`Error loading script: ${paths[lib]}`);\n",
" s.src = paths[lib];\n",
" });\n",
" }\n",
"\n",
" function showError(err) {\n",
" outputDiv.innerHTML = `<div class=\"error\" style=\"color:red;\">${err}</div>`;\n",
" throw err;\n",
" }\n",
"\n",
" function displayChart(vegaEmbed) {\n",
" vegaEmbed(outputDiv, spec, embedOpt)\n",
" .catch(err => showError(`Javascript Error: ${err.message}<br>This usually means there's a typo in your chart specification. See the javascript console for the full traceback.`));\n",
" }\n",
"\n",
" if(typeof define === \"function\" && define.amd) {\n",
" requirejs.config({paths});\n",
" require([\"vega-embed\"], displayChart, err => showError(`Error loading script: ${err.message}`));\n",
" } else {\n",
" maybeLoadScript(\"vega\", \"5\")\n",
" .then(() => maybeLoadScript(\"vega-lite\", \"5.17.0\"))\n",
" .then(() => maybeLoadScript(\"vega-embed\", \"6\"))\n",
" .catch(showError)\n",
" .then(() => displayChart(vegaEmbed));\n",
" }\n",
" })({\"config\": {\"view\": {\"continuousWidth\": 300, \"continuousHeight\": 300}}, \"layer\": [{\"mark\": {\"type\": \"line\", \"interpolate\": \"basis\"}, \"encoding\": {\"color\": {\"field\": \"species\", \"type\": \"nominal\"}, \"x\": {\"field\": \"PT\", \"scale\": {\"type\": \"log\"}, \"title\": \"Ratio PT/kD\", \"type\": \"quantitative\"}, \"y\": {\"field\": \"y\", \"title\": \"Fraction of total\", \"type\": \"quantitative\"}}}, {\"mark\": {\"type\": \"point\"}, \"encoding\": {\"color\": {\"field\": \"species\", \"type\": \"nominal\"}, \"opacity\": {\"condition\": {\"param\": \"param_2\", \"value\": 1, \"empty\": false}, \"value\": 0}, \"x\": {\"field\": \"PT\", \"scale\": {\"type\": \"log\"}, \"title\": \"Ratio PT/kD\", \"type\": \"quantitative\"}, \"y\": {\"field\": \"y\", \"title\": \"Fraction of total\", \"type\": \"quantitative\"}}}, {\"mark\": {\"type\": \"rule\", \"color\": \"black\"}, \"encoding\": {\"opacity\": {\"condition\": {\"param\": \"param_2\", \"value\": 0.3, \"empty\": false}, \"value\": 0}, \"tooltip\": [{\"field\": \"PT\", \"format\": \".2f\", \"type\": \"quantitative\"}, {\"field\": \"P_1\", \"format\": \".2f\", \"type\": \"quantitative\"}, {\"field\": \"P_2\", \"format\": \".2f\", \"type\": \"quantitative\"}], \"x\": {\"field\": \"PT\", \"type\": \"quantitative\"}}, \"name\": \"view_2\", \"transform\": [{\"pivot\": \"species\", \"value\": \"y\", \"groupby\": [\"PT\"]}]}], \"data\": {\"name\": \"data-446f9e2ed8437d0111f079d2121109d1\"}, \"height\": 300, \"params\": [{\"name\": \"param_2\", \"select\": {\"type\": \"point\", \"fields\": [\"PT\"], \"nearest\": true, \"on\": \"pointerover\"}, \"views\": [\"view_2\"]}], \"width\": 600, \"$schema\": \"https://vega.github.io/schema/vega-lite/v5.17.0.json\", \"datasets\": {\"data-446f9e2ed8437d0111f079d2121109d1\": [{\"PT\": 0.1, \"species\": \"P_1\", \"y\": 0.9213106741667366}, {\"PT\": 0.10974987654930562, \"species\": \"P_1\", \"y\": 0.9152478142703887}, {\"PT\": 0.12045035402587821, \"species\": \"P_1\", \"y\": 0.9088252563655043}, {\"PT\": 0.1321941148466029, \"species\": \"P_1\", \"y\": 0.9020350932162419}, {\"PT\": 0.14508287784959398, \"species\": \"P_1\", \"y\": 0.8948707231715299}, {\"PT\": 0.1592282793341092, \"species\": \"P_1\", \"y\": 0.887326964051884}, {\"PT\": 0.17475284000076838, \"species\": \"P_1\", \"y\": 0.8794001529111963}, {\"PT\": 0.19179102616724888, \"species\": \"P_1\", \"y\": 0.8710882296412226}, {\"PT\": 0.2104904144512021, \"species\": \"P_1\", \"y\": 0.8623908028192255}, {\"PT\": 0.23101297000831597, \"species\": \"P_1\", \"y\": 0.8533091966764864}, {\"PT\": 0.2535364493970112, \"species\": \"P_1\", \"y\": 0.8438464785616561}, {\"PT\": 0.2782559402207124, \"species\": \"P_1\", \"y\": 0.8340074667631514}, {\"PT\": 0.30538555088334157, \"species\": \"P_1\", \"y\": 0.8237987190163906}, {\"PT\": 0.33516026509388425, \"species\": \"P_1\", \"y\": 0.813228502436007}, {\"PT\": 0.36783797718286343, \"species\": \"P_1\", \"y\": 0.8023067459666666}, {\"PT\": 0.40370172585965547, \"species\": \"P_1\", \"y\": 0.791044976730576}, {\"PT\": 0.4430621457583881, \"species\": \"P_1\", \"y\": 0.7794562418623244}, {\"PT\": 0.4862601580065355, \"species\": \"P_1\", \"y\": 0.7675550175641289}, {\"PT\": 0.533669923120631, \"species\": \"P_1\", \"y\": 0.7553571071923714}, {\"PT\": 0.5857020818056667, \"species\": \"P_1\", \"y\": 0.742879530207701}, {\"PT\": 0.6428073117284322, \"species\": \"P_1\", \"y\": 0.7301404037955845}, {\"PT\": 0.7054802310718644, \"species\": \"P_1\", \"y\": 0.7171588189022171}, {\"PT\": 0.7742636826811272, \"species\": \"P_1\", \"y\": 0.7039547123419793}, {\"PT\": 0.8497534359086445, \"species\": \"P_1\", \"y\": 0.6905487365260083}, {\"PT\": 0.9326033468832199, \"species\": \"P_1\", \"y\": 0.6769621282444622}, {\"PT\": 1.0235310218990263, \"species\": \"P_1\", \"y\": 0.6632165778136448}, {\"PT\": 1.1233240329780276, \"species\": \"P_1\", \"y\": 0.6493340997777712}, {\"PT\": 1.2328467394420666, \"species\": \"P_1\", \"y\": 0.6353369062367451}, {\"PT\": 1.3530477745798075, \"species\": \"P_1\", \"y\": 0.6212472837576913}, {\"PT\": 1.484968262254465, \"species\": \"P_1\", \"y\": 0.6070874747199139}, {\"PT\": 1.6297508346206444, \"species\": \"P_1\", \"y\": 0.5928795638405217}, {\"PT\": 1.7886495290574351, \"species\": \"P_1\", \"y\": 0.5786453705308084}, {\"PT\": 1.9630406500402715, \"species\": \"P_1\", \"y\": 0.5644063476409491}, {\"PT\": 2.1544346900318843, \"species\": \"P_1\", \"y\": 0.5501834870619822}, {\"PT\": 2.3644894126454084, \"species\": \"P_1\", \"y\": 0.5359972325687437}, {\"PT\": 2.5950242113997373, \"species\": \"P_1\", \"y\": 0.5218674002048792}, {\"PT\": 2.848035868435802, \"species\": \"P_1\", \"y\": 0.5078131064309908}, {\"PT\": 3.1257158496882367, \"species\": \"P_1\", \"y\": 0.493852704179271}, {\"PT\": 3.4304692863149193, \"species\": \"P_1\", \"y\": 0.48000372688273857}, {\"PT\": 3.764935806792469, \"species\": \"P_1\", \"y\": 0.4662828404747031}, {\"PT\": 4.132012400115339, \"species\": \"P_1\", \"y\": 0.45270580328479026}, {\"PT\": 4.5348785081285845, \"species\": \"P_1\", \"y\": 0.43928743369225387}, {\"PT\": 4.977023564332112, \"species\": \"P_1\", \"y\": 0.42604158533598346}, {\"PT\": 5.462277217684343, \"species\": \"P_1\", \"y\": 0.41298112962415334}, {\"PT\": 5.994842503189412, \"species\": \"P_1\", \"y\": 0.4001179452353983}, {\"PT\": 6.5793322465756825, \"species\": \"P_1\", \"y\": 0.3874629142582253}, {\"PT\": 7.220809018385467, \"species\": \"P_1\", \"y\": 0.3750259245764573}, {\"PT\": 7.924828983539178, \"species\": \"P_1\", \"y\": 0.3628158780761266}, {\"PT\": 8.697490026177835, \"species\": \"P_1\", \"y\": 0.3508407042235381}, {\"PT\": 9.545484566618342, \"species\": \"P_1\", \"y\": 0.33910737854522055}, {\"PT\": 10.476157527896651, \"species\": \"P_1\", \"y\": 0.32762194552806667}, {\"PT\": 11.497569953977369, \"species\": \"P_1\", \"y\": 0.3163895454519114}, {\"PT\": 12.61856883066021, \"species\": \"P_1\", \"y\": 0.30541444466676376}, {\"PT\": 13.848863713938732, \"species\": \"P_1\", \"y\": 0.2947000688324766}, {\"PT\": 15.199110829529348, \"species\": \"P_1\", \"y\": 0.28424903864930695}, {\"PT\": 16.68100537200059, \"species\": \"P_1\", \"y\": 0.27406320762302827}, {\"PT\": 18.307382802953697, \"species\": \"P_1\", \"y\": 0.2641437014274086}, {\"PT\": 20.09233002565048, \"species\": \"P_1\", \"y\": 0.2544909584493632}, {\"PT\": 22.051307399030456, \"species\": \"P_1\", \"y\": 0.24510477112727974}, {\"PT\": 24.201282647943835, \"species\": \"P_1\", \"y\": 0.2359843277203209}, {\"PT\": 26.560877829466868, \"species\": \"P_1\", \"y\": 0.2271282541753208}, {\"PT\": 29.150530628251786, \"species\": \"P_1\", \"y\": 0.21853465578766545}, {\"PT\": 31.992671377973846, \"species\": \"P_1\", \"y\": 0.2102011583827801}, {\"PT\": 35.111917342151344, \"species\": \"P_1\", \"y\": 0.20212494877505027}, {\"PT\": 38.535285937105314, \"species\": \"P_1\", \"y\": 0.1943028142908023}, {\"PT\": 42.29242874389499, \"species\": \"P_1\", \"y\": 0.1867311811709695}, {\"PT\": 46.41588833612782, \"species\": \"P_1\", \"y\": 0.17940615169700316}, {\"PT\": 50.9413801481638, \"species\": \"P_1\", \"y\": 0.17232353991018073}, {\"PT\": 55.90810182512229, \"species\": \"P_1\", \"y\": 0.16547890581953636}, {\"PT\": 61.35907273413176, \"species\": \"P_1\", \"y\": 0.15886758801703976}, {\"PT\": 67.34150657750828, \"species\": \"P_1\", \"y\": 0.1524847346402729}, {\"PT\": 73.90722033525783, \"species\": \"P_1\", \"y\": 0.14632533264264772}, {\"PT\": 81.11308307896873, \"species\": \"P_1\", \"y\": 0.14038423534913913}, {\"PT\": 89.02150854450393, \"species\": \"P_1\", \"y\": 0.1346561882915889}, {\"PT\": 97.70099572992257, \"species\": \"P_1\", \"y\": 0.12913585333189967}, {\"PT\": 107.22672220103243, \"species\": \"P_1\", \"y\": 0.12381783109393958}, {\"PT\": 117.68119524349991, \"species\": \"P_1\", \"y\": 0.11869668173579613}, {\"PT\": 129.1549665014884, \"species\": \"P_1\", \"y\": 0.11376694410323461}, {\"PT\": 141.7474162926806, \"species\": \"P_1\", \"y\": 0.10902315331294034}, {\"PT\": 155.56761439304722, \"species\": \"P_1\", \"y\": 0.10445985682045184}, {\"PT\": 170.7352647470692, \"species\": \"P_1\", \"y\": 0.10007162903274308}, {\"PT\": 187.3817422860385, \"species\": \"P_1\", \"y\": 0.09585308452929588}, {\"PT\": 205.65123083486534, \"species\": \"P_1\", \"y\": 0.0917988899583294}, {\"PT\": 225.70197196339214, \"species\": \"P_1\", \"y\": 0.08790377467673861}, {\"PT\": 247.70763559917114, \"species\": \"P_1\", \"y\": 0.08416254020333655}, {\"PT\": 271.85882427329426, \"species\": \"P_1\", \"y\": 0.0805700685553064}, {\"PT\": 298.364724028334, \"species\": \"P_1\", \"y\": 0.07712132953743882}, {\"PT\": 327.4549162877732, \"species\": \"P_1\", \"y\": 0.07381138705285176}, {\"PT\": 359.3813663804629, \"species\": \"P_1\", \"y\": 0.07063540450254992}, {\"PT\": 394.420605943766, \"species\": \"P_1\", \"y\": 0.06758864933944884}, {\"PT\": 432.87612810830615, \"species\": \"P_1\", \"y\": 0.06466649684044665}, {\"PT\": 475.0810162102798, \"species\": \"P_1\", \"y\": 0.061864433157825666}, {\"PT\": 521.400828799969, \"species\": \"P_1\", \"y\": 0.05917805770877593}, {\"PT\": 572.236765935022, \"species\": \"P_1\", \"y\": 0.0566030849591937}, {\"PT\": 628.029144183426, \"species\": \"P_1\", \"y\": 0.05413534565517292}, {\"PT\": 689.2612104349702, \"species\": \"P_1\", \"y\": 0.05177078755281282}, {\"PT\": 756.463327554629, \"species\": \"P_1\", \"y\": 0.04950547569414219}, {\"PT\": 830.2175681319752, \"species\": \"P_1\", \"y\": 0.04733559227414581}, {\"PT\": 911.1627561154896, \"species\": \"P_1\", \"y\": 0.045257436141088785}, {\"PT\": 1000.0, \"species\": \"P_1\", \"y\": 0.04326742196959632}, {\"PT\": 0.1, \"species\": \"P_2\", \"y\": 0.07868932583326321}, {\"PT\": 0.10974987654930562, \"species\": \"P_2\", \"y\": 0.08475218572961124}, {\"PT\": 0.12045035402587821, \"species\": \"P_2\", \"y\": 0.09117474363449568}, {\"PT\": 0.1321941148466029, \"species\": \"P_2\", \"y\": 0.09796490678375804}, {\"PT\": 0.14508287784959398, \"species\": \"P_2\", \"y\": 0.10512927682846993}, {\"PT\": 0.1592282793341092, \"species\": \"P_2\", \"y\": 0.11267303594811592}, {\"PT\": 0.17475284000076838, \"species\": \"P_2\", \"y\": 0.12059984708880354}, {\"PT\": 0.19179102616724888, \"species\": \"P_2\", \"y\": 0.12891177035877757}, {\"PT\": 0.2104904144512021, \"species\": \"P_2\", \"y\": 0.1376091971807744}, {\"PT\": 0.23101297000831597, \"species\": \"P_2\", \"y\": 0.14669080332351347}, {\"PT\": 0.2535364493970112, \"species\": \"P_2\", \"y\": 0.1561535214383439}, {\"PT\": 0.2782559402207124, \"species\": \"P_2\", \"y\": 0.1659925332368486}, {\"PT\": 0.30538555088334157, \"species\": \"P_2\", \"y\": 0.17620128098360954}, {\"PT\": 0.33516026509388425, \"species\": \"P_2\", \"y\": 0.18677149756399297}, {\"PT\": 0.36783797718286343, \"species\": \"P_2\", \"y\": 0.19769325403333335}, {\"PT\": 0.40370172585965547, \"species\": \"P_2\", \"y\": 0.20895502326942395}, {\"PT\": 0.4430621457583881, \"species\": \"P_2\", \"y\": 0.22054375813767554}, {\"PT\": 0.4862601580065355, \"species\": \"P_2\", \"y\": 0.2324449824358711}, {\"PT\": 0.533669923120631, \"species\": \"P_2\", \"y\": 0.24464289280762855}, {\"PT\": 0.5857020818056667, \"species\": \"P_2\", \"y\": 0.257120469792299}, {\"PT\": 0.6428073117284322, \"species\": \"P_2\", \"y\": 0.26985959620441546}, {\"PT\": 0.7054802310718644, \"species\": \"P_2\", \"y\": 0.2828411810977828}, {\"PT\": 0.7742636826811272, \"species\": \"P_2\", \"y\": 0.2960452876580207}, {\"PT\": 0.8497534359086445, \"species\": \"P_2\", \"y\": 0.3094512634739916}, {\"PT\": 0.9326033468832199, \"species\": \"P_2\", \"y\": 0.3230378717555378}, {\"PT\": 1.0235310218990263, \"species\": \"P_2\", \"y\": 0.33678342218635515}, {\"PT\": 1.1233240329780276, \"species\": \"P_2\", \"y\": 0.3506659002222288}, {\"PT\": 1.2328467394420666, \"species\": \"P_2\", \"y\": 0.36466309376325495}, {\"PT\": 1.3530477745798075, \"species\": \"P_2\", \"y\": 0.37875271624230866}, {\"PT\": 1.484968262254465, \"species\": \"P_2\", \"y\": 0.39291252528008624}, {\"PT\": 1.6297508346206444, \"species\": \"P_2\", \"y\": 0.40712043615947846}, {\"PT\": 1.7886495290574351, \"species\": \"P_2\", \"y\": 0.42135462946919144}, {\"PT\": 1.9630406500402715, \"species\": \"P_2\", \"y\": 0.4355936523590508}, {\"PT\": 2.1544346900318843, \"species\": \"P_2\", \"y\": 0.4498165129380179}, {\"PT\": 2.3644894126454084, \"species\": \"P_2\", \"y\": 0.4640027674312564}, {\"PT\": 2.5950242113997373, \"species\": \"P_2\", \"y\": 0.4781325997951208}, {\"PT\": 2.848035868435802, \"species\": \"P_2\", \"y\": 0.49218689356900924}, {\"PT\": 3.1257158496882367, \"species\": \"P_2\", \"y\": 0.5061472958207289}, {\"PT\": 3.4304692863149193, \"species\": \"P_2\", \"y\": 0.5199962731172615}, {\"PT\": 3.764935806792469, \"species\": \"P_2\", \"y\": 0.533717159525297}, {\"PT\": 4.132012400115339, \"species\": \"P_2\", \"y\": 0.5472941967152098}, {\"PT\": 4.5348785081285845, \"species\": \"P_2\", \"y\": 0.5607125663077462}, {\"PT\": 4.977023564332112, \"species\": \"P_2\", \"y\": 0.5739584146640166}, {\"PT\": 5.462277217684343, \"species\": \"P_2\", \"y\": 0.5870188703758467}, {\"PT\": 5.994842503189412, \"species\": \"P_2\", \"y\": 0.5998820547646017}, {\"PT\": 6.5793322465756825, \"species\": \"P_2\", \"y\": 0.6125370857417747}, {\"PT\": 7.220809018385467, \"species\": \"P_2\", \"y\": 0.6249740754235427}, {\"PT\": 7.924828983539178, \"species\": \"P_2\", \"y\": 0.6371841219238735}, {\"PT\": 8.697490026177835, \"species\": \"P_2\", \"y\": 0.6491592957764619}, {\"PT\": 9.545484566618342, \"species\": \"P_2\", \"y\": 0.6608926214547796}, {\"PT\": 10.476157527896651, \"species\": \"P_2\", \"y\": 0.6723780544719333}, {\"PT\": 11.497569953977369, \"species\": \"P_2\", \"y\": 0.6836104545480887}, {\"PT\": 12.61856883066021, \"species\": \"P_2\", \"y\": 0.6945855553332363}, {\"PT\": 13.848863713938732, \"species\": \"P_2\", \"y\": 0.7052999311675234}, {\"PT\": 15.199110829529348, \"species\": \"P_2\", \"y\": 0.7157509613506929}, {\"PT\": 16.68100537200059, \"species\": \"P_2\", \"y\": 0.7259367923769716}, {\"PT\": 18.307382802953697, \"species\": \"P_2\", \"y\": 0.7358562985725914}, {\"PT\": 20.09233002565048, \"species\": \"P_2\", \"y\": 0.7455090415506367}, {\"PT\": 22.051307399030456, \"species\": \"P_2\", \"y\": 0.7548952288727201}, {\"PT\": 24.201282647943835, \"species\": \"P_2\", \"y\": 0.7640156722796789}, {\"PT\": 26.560877829466868, \"species\": \"P_2\", \"y\": 0.7728717458246792}, {\"PT\": 29.150530628251786, \"species\": \"P_2\", \"y\": 0.7814653442123345}, {\"PT\": 31.992671377973846, \"species\": \"P_2\", \"y\": 0.7897988416172199}, {\"PT\": 35.111917342151344, \"species\": \"P_2\", \"y\": 0.7978750512249496}, {\"PT\": 38.535285937105314, \"species\": \"P_2\", \"y\": 0.8056971857091976}, {\"PT\": 42.29242874389499, \"species\": \"P_2\", \"y\": 0.8132688188290305}, {\"PT\": 46.41588833612782, \"species\": \"P_2\", \"y\": 0.8205938483029968}, {\"PT\": 50.9413801481638, \"species\": \"P_2\", \"y\": 0.8276764600898192}, {\"PT\": 55.90810182512229, \"species\": \"P_2\", \"y\": 0.8345210941804637}, {\"PT\": 61.35907273413176, \"species\": \"P_2\", \"y\": 0.8411324119829602}, {\"PT\": 67.34150657750828, \"species\": \"P_2\", \"y\": 0.8475152653597271}, {\"PT\": 73.90722033525783, \"species\": \"P_2\", \"y\": 0.8536746673573522}, {\"PT\": 81.11308307896873, \"species\": \"P_2\", \"y\": 0.8596157646508609}, {\"PT\": 89.02150854450393, \"species\": \"P_2\", \"y\": 0.8653438117084111}, {\"PT\": 97.70099572992257, \"species\": \"P_2\", \"y\": 0.8708641466681002}, {\"PT\": 107.22672220103243, \"species\": \"P_2\", \"y\": 0.8761821689060604}, {\"PT\": 117.68119524349991, \"species\": \"P_2\", \"y\": 0.8813033182642038}, {\"PT\": 129.1549665014884, \"species\": \"P_2\", \"y\": 0.8862330558967654}, {\"PT\": 141.7474162926806, \"species\": \"P_2\", \"y\": 0.8909768466870598}, {\"PT\": 155.56761439304722, \"species\": \"P_2\", \"y\": 0.8955401431795483}, {\"PT\": 170.7352647470692, \"species\": \"P_2\", \"y\": 0.8999283709672571}, {\"PT\": 187.3817422860385, \"species\": \"P_2\", \"y\": 0.9041469154707042}, {\"PT\": 205.65123083486534, \"species\": \"P_2\", \"y\": 0.9082011100416706}, {\"PT\": 225.70197196339214, \"species\": \"P_2\", \"y\": 0.9120962253232613}, {\"PT\": 247.70763559917114, \"species\": \"P_2\", \"y\": 0.9158374597966633}, {\"PT\": 271.85882427329426, \"species\": \"P_2\", \"y\": 0.9194299314446935}, {\"PT\": 298.364724028334, \"species\": \"P_2\", \"y\": 0.9228786704625612}, {\"PT\": 327.4549162877732, \"species\": \"P_2\", \"y\": 0.9261886129471482}, {\"PT\": 359.3813663804629, \"species\": \"P_2\", \"y\": 0.9293645954974501}, {\"PT\": 394.420605943766, \"species\": \"P_2\", \"y\": 0.932411350660551}, {\"PT\": 432.87612810830615, \"species\": \"P_2\", \"y\": 0.9353335031595534}, {\"PT\": 475.0810162102798, \"species\": \"P_2\", \"y\": 0.9381355668421743}, {\"PT\": 521.400828799969, \"species\": \"P_2\", \"y\": 0.9408219422912241}, {\"PT\": 572.236765935022, \"species\": \"P_2\", \"y\": 0.9433969150408062}, {\"PT\": 628.029144183426, \"species\": \"P_2\", \"y\": 0.9458646543448271}, {\"PT\": 689.2612104349702, \"species\": \"P_2\", \"y\": 0.9482292124471873}, {\"PT\": 756.463327554629, \"species\": \"P_2\", \"y\": 0.9504945243058579}, {\"PT\": 830.2175681319752, \"species\": \"P_2\", \"y\": 0.9526644077258541}, {\"PT\": 911.1627561154896, \"species\": \"P_2\", \"y\": 0.9547425638589112}, {\"PT\": 1000.0, \"species\": \"P_2\", \"y\": 0.9567325780304037}]}}, {\"mode\": \"vega-lite\"});\n",
"</script>"
],
"text/plain": [
"alt.LayerChart(...)"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import altair as alt\n",
"\n",
"source = df.melt(\"PT\", var_name=\"species\", value_name=\"y\")\n",
"\n",
"# Create a selection that chooses the nearest point & selects based on x-value\n",
"nearest = alt.selection_point(nearest=True, on=\"pointerover\",\n",
" fields=[\"PT\"], empty=False)\n",
"\n",
"# The basic line\n",
"line = alt.Chart(source).mark_line(interpolate=\"basis\").encode(\n",
" x=alt.X(\"PT:Q\", scale=alt.Scale(type=\"log\"), title='Ratio PT/kD'),\n",
" y=alt.Y(\"y:Q\", title='Fraction of total'),\n",
" color=\"species:N\",\n",
")\n",
"\n",
"# Draw points on the line, and highlight based on selection\n",
"points = line.mark_point().encode(\n",
" opacity=alt.condition(nearest, alt.value(1), alt.value(0))\n",
")\n",
"\n",
"# Draw a rule at the location of the selection\n",
"rules = alt.Chart(source).transform_pivot(\n",
" \"species\",\n",
" value=\"y\",\n",
" groupby=[\"PT\"]\n",
").mark_rule(color=\"black\").encode(\n",
" x=\"PT:Q\",\n",
" opacity=alt.condition(nearest, alt.value(0.3), alt.value(0)),\n",
" tooltip=[alt.Tooltip(c, type=\"quantitative\", format=\".2f\") for c in df.columns],\n",
").add_params(nearest)\n",
"\n",
"\n",
"# Put the five layers into a chart and bind the data\n",
"alt.layer(\n",
" line, points, rules\n",
").properties(\n",
" width=600, height=300\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From the graph, we can see that if we are at $k_D$, the ratio monomer to dimer is two-to-one, and 50% dimerization is reached at 3 times $k_D$, and for 95% saturation we need to be at > 500 times $k_D$!\n",
"\n",
"So what about the '10x above $k_D$ is full complex formation' rule? This rule only applies some situations where we study the binding between different partners, such as the formation of an enzyme-ligand complex, and will be the subject of the next post (to be published). "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Meanwhile, we can think about _why_ its so hard to reach full dimerization even if concentrations used are far higher than the dissociation constant. If we think about the reaction from an maximum entropy point of view, out intuition might tell us that the entropic equivalent of making all promomers into a dimer is the equivalent of putting all 'air molecules' into one corner of the room: it has a vanishingly low probability of happing because its so far away from the maximium entropy state of the system. \n",
"\n",
"Second, a closer look at the differential equation describing the change of $[P_2]$ also tells us the answer. There are two terms in this equation: one is positive and depends on $[P_1]$, the second is negative and depends on $[P_2]$. Therefore, even when there is a lot of total protomer $[P_T]$ compared to the $k_D$, as more and more dimer is formed $[P_1]$ will go down while $[P_2]$ goes up. Thus the positive term becomes smaller while the negative term becomes bigger, slowing down the formation of dimer, and equillibrium is reached at a point with still a large fraction of $P_1$ in solution. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv-py311",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|