Jhsmit commited on
Commit
90ab22d
·
1 Parent(s): 0a4042c

add tetramerization

Browse files
Files changed (1) hide show
  1. tetramer.py +163 -0
tetramer.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # %%
2
+
3
+ from pathlib import Path
4
+
5
+ import altair as alt
6
+ import numpy as np
7
+ import pandas as pd
8
+ import solara
9
+ import solara.lab
10
+ import sympy as sp
11
+ from scipy.optimize import root_scalar
12
+
13
+ # %%
14
+ P1, P2, P4, PT, kD1, kD2 = sp.symbols("P_1 P_2 P_4 P_T k_D1 k_D2", positive=True)
15
+
16
+ # %%
17
+ sub_p1_p2 = (P1, sp.solve(kD1 * (P2 / P1**2) - 1, P1)[0])
18
+ sub_p2_p4 = (P2, sp.solve(kD2 * (P4 / P2**2) - 1, P2)[0])
19
+ sub_p4_p2 = (P4, sp.solve(kD2 * (P4 / P2**2) - 1, P4)[0])
20
+
21
+ # %%
22
+ mass_balance = P1 + 2 * P2 + 4 * P4 - PT
23
+
24
+ eq_p4 = mass_balance.subs([sub_p1_p2, sub_p2_p4])
25
+ eq_p2 = mass_balance.subs([sub_p1_p2, sub_p4_p2])
26
+
27
+ # %%
28
+
29
+
30
+ def make_df(vmin: float, vmax: float, kD_1_v: float, kD2_v: float) -> pd.DataFrame:
31
+ PT_values = np.logspace(np.log10(vmin), np.log10(vmax), endpoint=True, num=100)
32
+
33
+ kd_subs = [(kD1, kD_1_v), (kD2, kD2_v)]
34
+
35
+ ld = sp.lambdify([P4, PT], eq_p4.subs(kd_subs))
36
+ P4_values = np.array(
37
+ [root_scalar(ld, bracket=(0, PT_v), args=(PT_v,)).root for PT_v in PT_values]
38
+ )
39
+
40
+ ld = sp.lambdify([P2, PT], eq_p2.subs(kd_subs))
41
+ P2_values = np.array(
42
+ [root_scalar(ld, bracket=(0, PT_v), args=(PT_v,)).root for PT_v in PT_values]
43
+ )
44
+
45
+ P1_values = PT_values - 2 * P2_values - 4 * P4_values
46
+
47
+ columns = {"P1": P1_values, "P2": P2_values, "P4": P4_values}
48
+ total = np.sum(list(columns.values()), axis=0)
49
+
50
+ df = pd.DataFrame(dict(PT=PT_values) | {k: v / total for k, v in columns.items()})
51
+
52
+ return df
53
+
54
+
55
+ def make_chart(df: pd.DataFrame) -> alt.LayerChart:
56
+ source = df.melt("PT", var_name="species", value_name="y")
57
+
58
+ # Create a selection that chooses the nearest point & selects based on x-value
59
+ nearest = alt.selection_point(
60
+ nearest=True, on="pointerover", fields=["PT"], empty=False
61
+ )
62
+
63
+ # The basic line
64
+ line = (
65
+ alt.Chart(source)
66
+ .mark_line(interpolate="basis")
67
+ .encode(
68
+ x=alt.X(
69
+ "PT:Q",
70
+ scale=alt.Scale(type="log"),
71
+ title="Total protomer concentration",
72
+ ),
73
+ y=alt.Y("y:Q", title="Fraction of total"),
74
+ color="species:N",
75
+ )
76
+ .properties(width="container")
77
+ )
78
+
79
+ # Draw points on the line, and highlight based on selection
80
+ points = (
81
+ line.mark_point()
82
+ .encode(opacity=alt.condition(nearest, alt.value(1), alt.value(0)))
83
+ .properties(width="container")
84
+ )
85
+
86
+ # Draw a rule at the location of the selection
87
+ rules = (
88
+ alt.Chart(source)
89
+ .transform_pivot("species", value="y", groupby=["PT"])
90
+ .mark_rule(color="black")
91
+ .encode(
92
+ x="PT:Q",
93
+ opacity=alt.condition(nearest, alt.value(0.3), alt.value(0)),
94
+ tooltip=[
95
+ alt.Tooltip(c, type="quantitative", format=".2f") for c in df.columns
96
+ ],
97
+ )
98
+ .add_params(nearest)
99
+ .properties(width="container")
100
+ )
101
+
102
+ # Put the five layers into a chart and bind the data
103
+ chart = (
104
+ alt.layer(line, points, rules)
105
+ .properties(height=300)
106
+ .configure(autosize="fit-x")
107
+ )
108
+
109
+ return chart
110
+
111
+
112
+ md = """
113
+ This app calculates monomer and dimer concentrations given a total amount of protomer PT and the
114
+ dissociation constant KD. More info on how and why can be found [HuggingFace](https://huggingface.co/spaces/Jhsmit/binding-kinetics) (right click, open new tab).
115
+ """
116
+
117
+
118
+ @solara.component
119
+ def Page():
120
+ solara.Style(Path("style.css"))
121
+
122
+ dark_effective = solara.lab.use_dark_effective()
123
+ if dark_effective is True:
124
+ alt.themes.enable("dark")
125
+
126
+ elif dark_effective is False:
127
+ alt.themes.enable("default")
128
+
129
+ kD1 = solara.use_reactive(1.0)
130
+ kD2 = solara.use_reactive(100)
131
+
132
+ vmin = solara.use_reactive(1e-3)
133
+ vmax = solara.use_reactive(1e3)
134
+
135
+ async def update():
136
+ df = make_df(vmin.value, vmax.value, kD1.value, kD2.value)
137
+ chart = make_chart(df)
138
+
139
+ return chart
140
+
141
+ task: solara.lab.Task = solara.lab.use_task(
142
+ update, dependencies=[kD1.value, kD2.value, vmin.value, vmax.value]
143
+ )
144
+
145
+ solara.Title("Tetramerization Kinetics")
146
+
147
+ with solara.Card("Fraction monomer/dimer/tetramer"):
148
+ with solara.GridFixed(columns=2):
149
+ with solara.Tooltip("Dissociation constant monomer/dimer"):
150
+ solara.InputFloat("kD1", value=kD1)
151
+ with solara.Tooltip("Dissociation constant dimer/tetramer"):
152
+ solara.InputFloat("kD2", value=kD2)
153
+ with solara.Tooltip("X axis lower limit"):
154
+ solara.InputFloat("xmin", value=vmin)
155
+ with solara.Tooltip("X axis upper limit"):
156
+ solara.InputFloat("xmax", value=vmax)
157
+ solara.HTML(tag="div", style="height: 10px")
158
+
159
+ if task.finished:
160
+ solara.FigureAltair(task.value)
161
+
162
+
163
+ # %%