Spaces:
Runtime error
Runtime error
add tetramerization
Browse files- tetramer.py +163 -0
tetramer.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import altair as alt
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
import solara
|
9 |
+
import solara.lab
|
10 |
+
import sympy as sp
|
11 |
+
from scipy.optimize import root_scalar
|
12 |
+
|
13 |
+
# %%
|
14 |
+
P1, P2, P4, PT, kD1, kD2 = sp.symbols("P_1 P_2 P_4 P_T k_D1 k_D2", positive=True)
|
15 |
+
|
16 |
+
# %%
|
17 |
+
sub_p1_p2 = (P1, sp.solve(kD1 * (P2 / P1**2) - 1, P1)[0])
|
18 |
+
sub_p2_p4 = (P2, sp.solve(kD2 * (P4 / P2**2) - 1, P2)[0])
|
19 |
+
sub_p4_p2 = (P4, sp.solve(kD2 * (P4 / P2**2) - 1, P4)[0])
|
20 |
+
|
21 |
+
# %%
|
22 |
+
mass_balance = P1 + 2 * P2 + 4 * P4 - PT
|
23 |
+
|
24 |
+
eq_p4 = mass_balance.subs([sub_p1_p2, sub_p2_p4])
|
25 |
+
eq_p2 = mass_balance.subs([sub_p1_p2, sub_p4_p2])
|
26 |
+
|
27 |
+
# %%
|
28 |
+
|
29 |
+
|
30 |
+
def make_df(vmin: float, vmax: float, kD_1_v: float, kD2_v: float) -> pd.DataFrame:
|
31 |
+
PT_values = np.logspace(np.log10(vmin), np.log10(vmax), endpoint=True, num=100)
|
32 |
+
|
33 |
+
kd_subs = [(kD1, kD_1_v), (kD2, kD2_v)]
|
34 |
+
|
35 |
+
ld = sp.lambdify([P4, PT], eq_p4.subs(kd_subs))
|
36 |
+
P4_values = np.array(
|
37 |
+
[root_scalar(ld, bracket=(0, PT_v), args=(PT_v,)).root for PT_v in PT_values]
|
38 |
+
)
|
39 |
+
|
40 |
+
ld = sp.lambdify([P2, PT], eq_p2.subs(kd_subs))
|
41 |
+
P2_values = np.array(
|
42 |
+
[root_scalar(ld, bracket=(0, PT_v), args=(PT_v,)).root for PT_v in PT_values]
|
43 |
+
)
|
44 |
+
|
45 |
+
P1_values = PT_values - 2 * P2_values - 4 * P4_values
|
46 |
+
|
47 |
+
columns = {"P1": P1_values, "P2": P2_values, "P4": P4_values}
|
48 |
+
total = np.sum(list(columns.values()), axis=0)
|
49 |
+
|
50 |
+
df = pd.DataFrame(dict(PT=PT_values) | {k: v / total for k, v in columns.items()})
|
51 |
+
|
52 |
+
return df
|
53 |
+
|
54 |
+
|
55 |
+
def make_chart(df: pd.DataFrame) -> alt.LayerChart:
|
56 |
+
source = df.melt("PT", var_name="species", value_name="y")
|
57 |
+
|
58 |
+
# Create a selection that chooses the nearest point & selects based on x-value
|
59 |
+
nearest = alt.selection_point(
|
60 |
+
nearest=True, on="pointerover", fields=["PT"], empty=False
|
61 |
+
)
|
62 |
+
|
63 |
+
# The basic line
|
64 |
+
line = (
|
65 |
+
alt.Chart(source)
|
66 |
+
.mark_line(interpolate="basis")
|
67 |
+
.encode(
|
68 |
+
x=alt.X(
|
69 |
+
"PT:Q",
|
70 |
+
scale=alt.Scale(type="log"),
|
71 |
+
title="Total protomer concentration",
|
72 |
+
),
|
73 |
+
y=alt.Y("y:Q", title="Fraction of total"),
|
74 |
+
color="species:N",
|
75 |
+
)
|
76 |
+
.properties(width="container")
|
77 |
+
)
|
78 |
+
|
79 |
+
# Draw points on the line, and highlight based on selection
|
80 |
+
points = (
|
81 |
+
line.mark_point()
|
82 |
+
.encode(opacity=alt.condition(nearest, alt.value(1), alt.value(0)))
|
83 |
+
.properties(width="container")
|
84 |
+
)
|
85 |
+
|
86 |
+
# Draw a rule at the location of the selection
|
87 |
+
rules = (
|
88 |
+
alt.Chart(source)
|
89 |
+
.transform_pivot("species", value="y", groupby=["PT"])
|
90 |
+
.mark_rule(color="black")
|
91 |
+
.encode(
|
92 |
+
x="PT:Q",
|
93 |
+
opacity=alt.condition(nearest, alt.value(0.3), alt.value(0)),
|
94 |
+
tooltip=[
|
95 |
+
alt.Tooltip(c, type="quantitative", format=".2f") for c in df.columns
|
96 |
+
],
|
97 |
+
)
|
98 |
+
.add_params(nearest)
|
99 |
+
.properties(width="container")
|
100 |
+
)
|
101 |
+
|
102 |
+
# Put the five layers into a chart and bind the data
|
103 |
+
chart = (
|
104 |
+
alt.layer(line, points, rules)
|
105 |
+
.properties(height=300)
|
106 |
+
.configure(autosize="fit-x")
|
107 |
+
)
|
108 |
+
|
109 |
+
return chart
|
110 |
+
|
111 |
+
|
112 |
+
md = """
|
113 |
+
This app calculates monomer and dimer concentrations given a total amount of protomer PT and the
|
114 |
+
dissociation constant KD. More info on how and why can be found [HuggingFace](https://huggingface.co/spaces/Jhsmit/binding-kinetics) (right click, open new tab).
|
115 |
+
"""
|
116 |
+
|
117 |
+
|
118 |
+
@solara.component
|
119 |
+
def Page():
|
120 |
+
solara.Style(Path("style.css"))
|
121 |
+
|
122 |
+
dark_effective = solara.lab.use_dark_effective()
|
123 |
+
if dark_effective is True:
|
124 |
+
alt.themes.enable("dark")
|
125 |
+
|
126 |
+
elif dark_effective is False:
|
127 |
+
alt.themes.enable("default")
|
128 |
+
|
129 |
+
kD1 = solara.use_reactive(1.0)
|
130 |
+
kD2 = solara.use_reactive(100)
|
131 |
+
|
132 |
+
vmin = solara.use_reactive(1e-3)
|
133 |
+
vmax = solara.use_reactive(1e3)
|
134 |
+
|
135 |
+
async def update():
|
136 |
+
df = make_df(vmin.value, vmax.value, kD1.value, kD2.value)
|
137 |
+
chart = make_chart(df)
|
138 |
+
|
139 |
+
return chart
|
140 |
+
|
141 |
+
task: solara.lab.Task = solara.lab.use_task(
|
142 |
+
update, dependencies=[kD1.value, kD2.value, vmin.value, vmax.value]
|
143 |
+
)
|
144 |
+
|
145 |
+
solara.Title("Tetramerization Kinetics")
|
146 |
+
|
147 |
+
with solara.Card("Fraction monomer/dimer/tetramer"):
|
148 |
+
with solara.GridFixed(columns=2):
|
149 |
+
with solara.Tooltip("Dissociation constant monomer/dimer"):
|
150 |
+
solara.InputFloat("kD1", value=kD1)
|
151 |
+
with solara.Tooltip("Dissociation constant dimer/tetramer"):
|
152 |
+
solara.InputFloat("kD2", value=kD2)
|
153 |
+
with solara.Tooltip("X axis lower limit"):
|
154 |
+
solara.InputFloat("xmin", value=vmin)
|
155 |
+
with solara.Tooltip("X axis upper limit"):
|
156 |
+
solara.InputFloat("xmax", value=vmax)
|
157 |
+
solara.HTML(tag="div", style="height: 10px")
|
158 |
+
|
159 |
+
if task.finished:
|
160 |
+
solara.FigureAltair(task.value)
|
161 |
+
|
162 |
+
|
163 |
+
# %%
|