Spaces:
Runtime error
Runtime error
add pycafe code
Browse files- cafe_app.py +138 -0
cafe_app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import altair as alt
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import solara
|
7 |
+
import sympy as sp
|
8 |
+
|
9 |
+
#
|
10 |
+
P1, P2, PT, k_on, k_off, kD = sp.symbols("P_1 P_2 P_T k_on k_off k_D", positive=True)
|
11 |
+
|
12 |
+
sol = sp.solve(
|
13 |
+
[
|
14 |
+
-2 * k_on * P1 * P1 + 2 * k_off * P2,
|
15 |
+
P1 + 2 * P2 - PT,
|
16 |
+
(k_off / k_on) - kD,
|
17 |
+
],
|
18 |
+
[P1, P2, k_on, k_off],
|
19 |
+
dict=True,
|
20 |
+
)
|
21 |
+
|
22 |
+
solve_for = [P1, P2]
|
23 |
+
inputs = [PT, kD]
|
24 |
+
|
25 |
+
lambdas = {s: sp.lambdify(inputs, sol[0][s]) for s in solve_for}
|
26 |
+
ld_total = sp.lambdify(inputs, sol[0][P1] + sol[0][P2])
|
27 |
+
|
28 |
+
|
29 |
+
def make_chart(df: pd.DataFrame) -> alt.Chart:
|
30 |
+
source = df.melt("PT", var_name="species", value_name="y")
|
31 |
+
|
32 |
+
# Create a selection that chooses the nearest point & selects based on x-value
|
33 |
+
nearest = alt.selection_point(
|
34 |
+
nearest=True, on="pointerover", fields=["PT"], empty=False
|
35 |
+
)
|
36 |
+
|
37 |
+
# The basic line
|
38 |
+
line = (
|
39 |
+
alt.Chart(source)
|
40 |
+
.mark_line(interpolate="basis")
|
41 |
+
.encode(
|
42 |
+
x=alt.X("PT:Q", scale=alt.Scale(type="log"), title="Ratio PT/kD"),
|
43 |
+
y=alt.Y("y:Q", title="Fraction of total"),
|
44 |
+
color="species:N",
|
45 |
+
)
|
46 |
+
.properties(width="container")
|
47 |
+
)
|
48 |
+
|
49 |
+
# Draw points on the line, and highlight based on selection
|
50 |
+
points = (
|
51 |
+
line.mark_point()
|
52 |
+
.encode(opacity=alt.condition(nearest, alt.value(1), alt.value(0)))
|
53 |
+
.properties(width="container")
|
54 |
+
)
|
55 |
+
|
56 |
+
# Draw a rule at the location of the selection
|
57 |
+
rules = (
|
58 |
+
alt.Chart(source)
|
59 |
+
.transform_pivot("species", value="y", groupby=["PT"])
|
60 |
+
.mark_rule(color="black")
|
61 |
+
.encode(
|
62 |
+
x="PT:Q",
|
63 |
+
opacity=alt.condition(nearest, alt.value(0.3), alt.value(0)),
|
64 |
+
tooltip=[
|
65 |
+
alt.Tooltip(c, type="quantitative", format=".2f") for c in df.columns
|
66 |
+
],
|
67 |
+
)
|
68 |
+
.add_params(nearest)
|
69 |
+
.properties(width="container")
|
70 |
+
)
|
71 |
+
|
72 |
+
# Put the five layers into a chart and bind the data
|
73 |
+
chart = (
|
74 |
+
alt.layer(line, points, rules)
|
75 |
+
.properties(height=300)
|
76 |
+
.configure(autosize="fit-x")
|
77 |
+
)
|
78 |
+
|
79 |
+
return chart
|
80 |
+
|
81 |
+
|
82 |
+
md = """
|
83 |
+
This app calculates monomer and dimer concentrations given a total amount of protomer PT and the
|
84 |
+
dissociation constant KD. More info on how and why can be found [HuggingFace](https://huggingface.co/spaces/Jhsmit/binding-kinetics) (right click, open new tab).
|
85 |
+
"""
|
86 |
+
|
87 |
+
|
88 |
+
@solara.component
|
89 |
+
def Page():
|
90 |
+
solara.Style(Path("style.css"))
|
91 |
+
|
92 |
+
dark_effective = solara.lab.use_dark_effective()
|
93 |
+
if dark_effective is True:
|
94 |
+
alt.themes.enable("dark")
|
95 |
+
|
96 |
+
elif dark_effective is False:
|
97 |
+
alt.themes.enable("default")
|
98 |
+
|
99 |
+
PT = solara.use_reactive(10.0)
|
100 |
+
kD = solara.use_reactive(1.0)
|
101 |
+
|
102 |
+
vmin = solara.use_reactive(-1)
|
103 |
+
vmax = solara.use_reactive(3)
|
104 |
+
|
105 |
+
ans = {k: ld(PT.value, kD.value) for k, ld in lambdas.items()}
|
106 |
+
|
107 |
+
solara.Title("Dimerization Kinetics")
|
108 |
+
with solara.Card("Calculate concentrations from kD"):
|
109 |
+
solara.Markdown(md)
|
110 |
+
with solara.GridFixed(columns=2):
|
111 |
+
with solara.Tooltip("Total protomer concentration"):
|
112 |
+
solara.InputFloat("PT", value=PT)
|
113 |
+
with solara.Tooltip("Dissociation constant"):
|
114 |
+
solara.InputFloat("kD", value=kD)
|
115 |
+
solara.Markdown(f"### Concentration monomer: {ans[P1]:.2f}")
|
116 |
+
solara.Markdown(f"### Concentration dimer: {ans[P2]:.2f}")
|
117 |
+
|
118 |
+
# create a vector of PT values ranging from 0.1 times kD to 1000 times kD
|
119 |
+
def update():
|
120 |
+
PT_values = np.logspace(vmin.value, vmax.value, endpoint=True, num=100)
|
121 |
+
ans = {
|
122 |
+
k: ld(PT_values, 1) / ld_total(PT_values, 1) for k, ld in lambdas.items()
|
123 |
+
}
|
124 |
+
|
125 |
+
# put the results in a dataframe, together with input PT values
|
126 |
+
df = pd.DataFrame(dict(PT=PT_values) | {k.name: v for k, v in ans.items()})
|
127 |
+
return make_chart(df)
|
128 |
+
|
129 |
+
chart = solara.use_memo(update, [vmin.value, vmax.value])
|
130 |
+
|
131 |
+
with solara.Card("Fraction monomer/dimer vs ratio over kD"):
|
132 |
+
with solara.Row():
|
133 |
+
with solara.Tooltip("X axis lower limit (log10)"):
|
134 |
+
solara.InputFloat("xmin", value=vmin)
|
135 |
+
with solara.Tooltip("X axis upper limit (log10)"):
|
136 |
+
solara.InputFloat("xmax", value=vmax)
|
137 |
+
solara.HTML(tag="div", style="height: 10px")
|
138 |
+
solara.FigureAltair(chart)
|