Jhsmit commited on
Commit
ef9fe45
·
1 Parent(s): 1e69bd6

add pycafe code

Browse files
Files changed (1) hide show
  1. cafe_app.py +138 -0
cafe_app.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+
3
+ import altair as alt
4
+ import numpy as np
5
+ import pandas as pd
6
+ import solara
7
+ import sympy as sp
8
+
9
+ #
10
+ P1, P2, PT, k_on, k_off, kD = sp.symbols("P_1 P_2 P_T k_on k_off k_D", positive=True)
11
+
12
+ sol = sp.solve(
13
+ [
14
+ -2 * k_on * P1 * P1 + 2 * k_off * P2,
15
+ P1 + 2 * P2 - PT,
16
+ (k_off / k_on) - kD,
17
+ ],
18
+ [P1, P2, k_on, k_off],
19
+ dict=True,
20
+ )
21
+
22
+ solve_for = [P1, P2]
23
+ inputs = [PT, kD]
24
+
25
+ lambdas = {s: sp.lambdify(inputs, sol[0][s]) for s in solve_for}
26
+ ld_total = sp.lambdify(inputs, sol[0][P1] + sol[0][P2])
27
+
28
+
29
+ def make_chart(df: pd.DataFrame) -> alt.Chart:
30
+ source = df.melt("PT", var_name="species", value_name="y")
31
+
32
+ # Create a selection that chooses the nearest point & selects based on x-value
33
+ nearest = alt.selection_point(
34
+ nearest=True, on="pointerover", fields=["PT"], empty=False
35
+ )
36
+
37
+ # The basic line
38
+ line = (
39
+ alt.Chart(source)
40
+ .mark_line(interpolate="basis")
41
+ .encode(
42
+ x=alt.X("PT:Q", scale=alt.Scale(type="log"), title="Ratio PT/kD"),
43
+ y=alt.Y("y:Q", title="Fraction of total"),
44
+ color="species:N",
45
+ )
46
+ .properties(width="container")
47
+ )
48
+
49
+ # Draw points on the line, and highlight based on selection
50
+ points = (
51
+ line.mark_point()
52
+ .encode(opacity=alt.condition(nearest, alt.value(1), alt.value(0)))
53
+ .properties(width="container")
54
+ )
55
+
56
+ # Draw a rule at the location of the selection
57
+ rules = (
58
+ alt.Chart(source)
59
+ .transform_pivot("species", value="y", groupby=["PT"])
60
+ .mark_rule(color="black")
61
+ .encode(
62
+ x="PT:Q",
63
+ opacity=alt.condition(nearest, alt.value(0.3), alt.value(0)),
64
+ tooltip=[
65
+ alt.Tooltip(c, type="quantitative", format=".2f") for c in df.columns
66
+ ],
67
+ )
68
+ .add_params(nearest)
69
+ .properties(width="container")
70
+ )
71
+
72
+ # Put the five layers into a chart and bind the data
73
+ chart = (
74
+ alt.layer(line, points, rules)
75
+ .properties(height=300)
76
+ .configure(autosize="fit-x")
77
+ )
78
+
79
+ return chart
80
+
81
+
82
+ md = """
83
+ This app calculates monomer and dimer concentrations given a total amount of protomer PT and the
84
+ dissociation constant KD. More info on how and why can be found [HuggingFace](https://huggingface.co/spaces/Jhsmit/binding-kinetics) (right click, open new tab).
85
+ """
86
+
87
+
88
+ @solara.component
89
+ def Page():
90
+ solara.Style(Path("style.css"))
91
+
92
+ dark_effective = solara.lab.use_dark_effective()
93
+ if dark_effective is True:
94
+ alt.themes.enable("dark")
95
+
96
+ elif dark_effective is False:
97
+ alt.themes.enable("default")
98
+
99
+ PT = solara.use_reactive(10.0)
100
+ kD = solara.use_reactive(1.0)
101
+
102
+ vmin = solara.use_reactive(-1)
103
+ vmax = solara.use_reactive(3)
104
+
105
+ ans = {k: ld(PT.value, kD.value) for k, ld in lambdas.items()}
106
+
107
+ solara.Title("Dimerization Kinetics")
108
+ with solara.Card("Calculate concentrations from kD"):
109
+ solara.Markdown(md)
110
+ with solara.GridFixed(columns=2):
111
+ with solara.Tooltip("Total protomer concentration"):
112
+ solara.InputFloat("PT", value=PT)
113
+ with solara.Tooltip("Dissociation constant"):
114
+ solara.InputFloat("kD", value=kD)
115
+ solara.Markdown(f"### Concentration monomer: {ans[P1]:.2f}")
116
+ solara.Markdown(f"### Concentration dimer: {ans[P2]:.2f}")
117
+
118
+ # create a vector of PT values ranging from 0.1 times kD to 1000 times kD
119
+ def update():
120
+ PT_values = np.logspace(vmin.value, vmax.value, endpoint=True, num=100)
121
+ ans = {
122
+ k: ld(PT_values, 1) / ld_total(PT_values, 1) for k, ld in lambdas.items()
123
+ }
124
+
125
+ # put the results in a dataframe, together with input PT values
126
+ df = pd.DataFrame(dict(PT=PT_values) | {k.name: v for k, v in ans.items()})
127
+ return make_chart(df)
128
+
129
+ chart = solara.use_memo(update, [vmin.value, vmax.value])
130
+
131
+ with solara.Card("Fraction monomer/dimer vs ratio over kD"):
132
+ with solara.Row():
133
+ with solara.Tooltip("X axis lower limit (log10)"):
134
+ solara.InputFloat("xmin", value=vmin)
135
+ with solara.Tooltip("X axis upper limit (log10)"):
136
+ solara.InputFloat("xmax", value=vmax)
137
+ solara.HTML(tag="div", style="height: 10px")
138
+ solara.FigureAltair(chart)