Last commit not found
# %% | |
from collections import defaultdict | |
import altair as alt | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
from cmap import Colormap | |
import polars as pl | |
#%% | |
df = pl.read_csv("example_data_bk.csv") | |
df.columns | |
df_crop = df[:, :3] | |
df_crop | |
df_crop.write_csv("example_data.csv") | |
#%% | |
# %% | |
kwargs = {"comment": "#", "header": [0, 1], "index_col": 0} | |
df = pd.read_csv("fit_result_batch.csv", **kwargs) | |
# %% | |
df | |
# %% | |
df_wt = df["SecB WT apo"].reset_index() | |
df_dimer = df["SecB his dimer apo"].reset_index() | |
AA_categories = { | |
"pos": ["R", "H", "K"], | |
"neg": ["D", "E"], | |
"aromatic": ["F", "W", "Y"], | |
"polar": ["S", "T", "N", "Q"], | |
"nonpolar": ["A", "V", "I", "L", "M"], | |
"other": ["G", "C", "P"], | |
} | |
cat_list = list(AA_categories) | |
AA_lut = {aa: category for category in AA_categories for aa in AA_categories[category]} | |
AA_lut | |
aa_cat_numbers = [cat_list.index(AA_lut[aa]) for aa in df_wt["sequence"]] | |
df_wt["aa_cat"] = aa_cat_numbers | |
# %% | |
cmap = Colormap("colorbrewer:Accent_6") | |
sol = defaultdict(list) | |
colors = cmap(df_wt["aa_cat"]) | |
nums = range(6) | |
colors = cmap(nums) | |
for n, c in zip(nums, colors): | |
print(n, c) | |
# %% | |
len(cmap.color_stops) | |
colors = cmap.to_altair(N=cmap.num_colors) | |
domain = range(6) | |
altair_scale = alt.Scale(domain=domain, range=colors, clamp=True) | |
# %% | |
alt.Chart(df_wt).mark_point().encode( | |
x="r_number", | |
y="aa_cat", | |
color=alt.Color("aa_cat:N", scale=altair_scale), | |
) | |
# %% | |
import pandas as pd | |
df = pd.DataFrame({"a": [1, 2, 3, 4], "b": [7, 6, 5, 4], "c": ["a", "b", "b", "c"]}) | |
chart = alt.Chart(df).mark_point().encode(alt.X("a"), alt.Y("b"), alt.Color("c:N")) | |
chart | |
# %% | |
# %% | |
ddG = df_wt["deltaG"] - df_dimer["deltaG"] | |
ddG | |
# %% | |
fig, ax = plt.subplots() | |
ax.scatter(df_wt["r_number"], df_wt["deltaG"]) | |
# %% | |
fig, ax = plt.subplots() | |
ax.scatter(df_wt["r_number"], ddG) | |
# %% | |
df_wt.columns | |
# %% | |
output = pd.DataFrame( | |
{ | |
"r_number": df_wt["r_number"], | |
"SecB tetramer ΔG": df_wt["deltaG"], | |
"dimer ΔΔG": ddG, | |
"aa_category": df_wt["aa_cat"], | |
} | |
) | |
output = output.set_index("r_number") | |
output | |
# %% | |
import numpy as np | |
N = 150 | |
fuzzy_sin = 0.5 * (1 + np.sin(np.arange(N) / 10.0)) + np.random.normal( | |
loc=0, scale=0.1, size=N | |
) | |
df = pd.DataFrame({"fuzzy_sin": fuzzy_sin}) | |
df | |
# add series to output dataframe a a column | |
output["fuzzy_sin"] = series | |
output | |
# %% | |
output.to_csv("SecB_data.csv") | |
# %% | |
dir(cmap) | |
cmap.category | |
# %% | |
tol_cmap = Colormap("tol:rainbow_discrete_7") | |
tol_cmap.category | |
tol_cmap.num_colors | |
tol_cmap.interpolation | |
# %% | |
tol_cmap = Colormap("vispy:hsl") | |
tol_cmap.category | |
tol_cmap.num_colors | |
tol_cmap.interpolation | |
# %% | |
tol_cmap = Colormap("yorick:stern") | |
tol_cmap.category | |
tol_cmap.num_colors | |
tol_cmap.interpolation | |
# %% | |
tol_cmap = Colormap("tol:rainbow_whbr") | |
tol_cmap.category | |
tol_cmap.num_colors | |
tol_cmap.interpolation | |
# %% | |
tol_cmap = Colormap("glasbey:glasbey") | |
tol_cmap.category | |
tol_cmap.num_colors | |
# tol_cmap.interpolation | |
# %% | |