switch to polars
Browse filesotherwise interger columns with missing data are not read as ints
- app.py +17 -11
- make_link.py +5 -5
- viewer.py +17 -45
app.py
CHANGED
@@ -4,8 +4,7 @@ from typing import Callable, Optional, cast
|
|
4 |
from urllib.parse import parse_qsl
|
5 |
|
6 |
import altair as alt
|
7 |
-
import
|
8 |
-
import pandas as pd
|
9 |
import reacton.core
|
10 |
import solara
|
11 |
import solara.lab
|
@@ -91,7 +90,7 @@ def ColorPickerMenuButton(title: str, color: solara.Reactive[str]):
|
|
91 |
)
|
92 |
|
93 |
|
94 |
-
empty_frame =
|
95 |
R_DEFAULT = ""
|
96 |
V_DEFAULT = ""
|
97 |
|
@@ -130,17 +129,17 @@ def MainApp():
|
|
130 |
|
131 |
def on_file(file_info: solara.components.file_drop.FileInfo | None):
|
132 |
if not file_info:
|
133 |
-
data.set(
|
134 |
return
|
135 |
|
136 |
try:
|
137 |
-
df =
|
138 |
except Exception as e:
|
139 |
warning_text.set(str(e))
|
140 |
return
|
141 |
if len(df.columns) < 2:
|
142 |
warning_text.set(f"Expected at least 2 columns, got {len(df.columns)}")
|
143 |
-
data.set(
|
144 |
return
|
145 |
|
146 |
warning_text.set("")
|
@@ -168,10 +167,10 @@ def MainApp():
|
|
168 |
autoscale_y=autoscale_y.value,
|
169 |
)
|
170 |
|
171 |
-
if data.value.
|
172 |
-
data_view =
|
173 |
else:
|
174 |
-
data_view =
|
175 |
{
|
176 |
"residue_number": data.value[residue_column.value],
|
177 |
"value": data.value[color_column.value],
|
@@ -236,7 +235,7 @@ def MainApp():
|
|
236 |
if warning_text.value:
|
237 |
solara.Warning(warning_text.value)
|
238 |
|
239 |
-
if not data.value.
|
240 |
with solara.Row():
|
241 |
solara.Select(
|
242 |
label="Residue Column",
|
@@ -258,10 +257,17 @@ def MainApp():
|
|
258 |
ColorPickerMenuButton("Highlight", highlight_color)
|
259 |
ColorPickerMenuButton("Missing data", missing_data_color)
|
260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
# with solara.Row():
|
262 |
solara.v.Autocomplete(
|
263 |
v_model=cmap_name.value,
|
264 |
-
on_v_model=
|
265 |
items=CMAP_OPTIONS,
|
266 |
)
|
267 |
|
|
|
4 |
from urllib.parse import parse_qsl
|
5 |
|
6 |
import altair as alt
|
7 |
+
import polars as pl
|
|
|
8 |
import reacton.core
|
9 |
import solara
|
10 |
import solara.lab
|
|
|
90 |
)
|
91 |
|
92 |
|
93 |
+
empty_frame = pl.DataFrame()
|
94 |
R_DEFAULT = ""
|
95 |
V_DEFAULT = ""
|
96 |
|
|
|
129 |
|
130 |
def on_file(file_info: solara.components.file_drop.FileInfo | None):
|
131 |
if not file_info:
|
132 |
+
data.set(pl.DataFrame())
|
133 |
return
|
134 |
|
135 |
try:
|
136 |
+
df = pl.read_csv(file_info["file_obj"])
|
137 |
except Exception as e:
|
138 |
warning_text.set(str(e))
|
139 |
return
|
140 |
if len(df.columns) < 2:
|
141 |
warning_text.set(f"Expected at least 2 columns, got {len(df.columns)}")
|
142 |
+
data.set(pl.DataFrame())
|
143 |
return
|
144 |
|
145 |
warning_text.set("")
|
|
|
167 |
autoscale_y=autoscale_y.value,
|
168 |
)
|
169 |
|
170 |
+
if data.value.is_empty():
|
171 |
+
data_view = pl.DataFrame({"residue_number": [], "value": []})
|
172 |
else:
|
173 |
+
data_view = pl.DataFrame(
|
174 |
{
|
175 |
"residue_number": data.value[residue_column.value],
|
176 |
"value": data.value[color_column.value],
|
|
|
235 |
if warning_text.value:
|
236 |
solara.Warning(warning_text.value)
|
237 |
|
238 |
+
if not data.value.is_empty():
|
239 |
with solara.Row():
|
240 |
solara.Select(
|
241 |
label="Residue Column",
|
|
|
257 |
ColorPickerMenuButton("Highlight", highlight_color)
|
258 |
ColorPickerMenuButton("Missing data", missing_data_color)
|
259 |
|
260 |
+
def set_cmap_name(name: str):
|
261 |
+
try:
|
262 |
+
Colormap(name)
|
263 |
+
cmap_name.set(name)
|
264 |
+
except TypeError:
|
265 |
+
pass
|
266 |
+
|
267 |
# with solara.Row():
|
268 |
solara.v.Autocomplete(
|
269 |
v_model=cmap_name.value,
|
270 |
+
on_v_model=set_cmap_name,
|
271 |
items=CMAP_OPTIONS,
|
272 |
)
|
273 |
|
make_link.py
CHANGED
@@ -5,7 +5,7 @@ from io import BytesIO
|
|
5 |
from typing import TYPE_CHECKING
|
6 |
from urllib.parse import urlencode
|
7 |
|
8 |
-
import
|
9 |
import zstandard as zstd
|
10 |
|
11 |
if TYPE_CHECKING:
|
@@ -20,13 +20,13 @@ def encode_url(
|
|
20 |
molecule_id: str,
|
21 |
colors: ColorTransform,
|
22 |
axis_properties: AxisProperties,
|
23 |
-
data:
|
24 |
description: str = "",
|
25 |
):
|
26 |
encode_dict = dict(title=title, molecule_id=molecule_id)
|
27 |
encode_dict.update({**colors.model_dump(), **axis_properties.model_dump()})
|
28 |
|
29 |
-
csv_str = data.
|
30 |
compressed = COMPRESSOR.compress(csv_str.encode())
|
31 |
base64_text = base64.b64encode(compressed).decode("utf8")
|
32 |
encode_dict["data"] = base64_text
|
@@ -36,12 +36,12 @@ def encode_url(
|
|
36 |
return urlencode(encode_dict)
|
37 |
|
38 |
|
39 |
-
def decode_data(base64_text) ->
|
40 |
decoded_bytes = base64.b64decode(base64_text)
|
41 |
decompressed = DECOMPRESSOR.decompress(decoded_bytes)
|
42 |
|
43 |
bio = BytesIO(decompressed)
|
44 |
-
data =
|
45 |
bio.close()
|
46 |
|
47 |
return data
|
|
|
5 |
from typing import TYPE_CHECKING
|
6 |
from urllib.parse import urlencode
|
7 |
|
8 |
+
import polars as pl
|
9 |
import zstandard as zstd
|
10 |
|
11 |
if TYPE_CHECKING:
|
|
|
20 |
molecule_id: str,
|
21 |
colors: ColorTransform,
|
22 |
axis_properties: AxisProperties,
|
23 |
+
data: pl.DataFrame,
|
24 |
description: str = "",
|
25 |
):
|
26 |
encode_dict = dict(title=title, molecule_id=molecule_id)
|
27 |
encode_dict.update({**colors.model_dump(), **axis_properties.model_dump()})
|
28 |
|
29 |
+
csv_str = data.write_csv(float_precision=4, float_scientific=True)
|
30 |
compressed = COMPRESSOR.compress(csv_str.encode())
|
31 |
base64_text = base64.b64encode(compressed).decode("utf8")
|
32 |
encode_dict["data"] = base64_text
|
|
|
36 |
return urlencode(encode_dict)
|
37 |
|
38 |
|
39 |
+
def decode_data(base64_text) -> pl.DataFrame:
|
40 |
decoded_bytes = base64.b64decode(base64_text)
|
41 |
decompressed = DECOMPRESSOR.decompress(decoded_bytes)
|
42 |
|
43 |
bio = BytesIO(decompressed)
|
44 |
+
data = pl.read_csv(bio)
|
45 |
bio.close()
|
46 |
|
47 |
return data
|
viewer.py
CHANGED
@@ -11,7 +11,7 @@ from urllib.parse import parse_qsl
|
|
11 |
import altair as alt
|
12 |
import ipywidgets as widgets
|
13 |
import numpy as np
|
14 |
-
import
|
15 |
import solara
|
16 |
import solara.lab
|
17 |
from cmap import Colormap
|
@@ -36,7 +36,8 @@ class ColorTransform(BaseModel):
|
|
36 |
missing_data_color: str = "#8c8c8c"
|
37 |
highlight_color: str = "#e933f8"
|
38 |
|
39 |
-
def molstar_colors(self, data:
|
|
|
40 |
if self.norm_type == "categorical":
|
41 |
values = data["value"]
|
42 |
else:
|
@@ -85,7 +86,7 @@ class AxisProperties(BaseModel):
|
|
85 |
|
86 |
|
87 |
def make_chart(
|
88 |
-
data:
|
89 |
) -> alt.LayerChart:
|
90 |
xmin, xmax = data["residue_number"].min(), data["residue_number"].max()
|
91 |
xpad = (xmax - xmin) * 0.05
|
@@ -163,7 +164,7 @@ def make_chart(
|
|
163 |
|
164 |
line_position = alt.param(name="line_position", value=0.0)
|
165 |
line_opacity = alt.param(name="line_opacity", value=1)
|
166 |
-
df_line =
|
167 |
|
168 |
# Create vertical rule with parameter
|
169 |
vline = (
|
@@ -188,7 +189,7 @@ def make_chart(
|
|
188 |
|
189 |
@solara.component
|
190 |
def ScatterChart(
|
191 |
-
data:
|
192 |
colors: ColorTransform,
|
193 |
axis_properties: AxisProperties,
|
194 |
on_selections,
|
@@ -223,11 +224,17 @@ def ScatterChart(
|
|
223 |
solara.use_effect(bind, [data, colors])
|
224 |
|
225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
@solara.component
|
227 |
def ProteinView(
|
228 |
title: str,
|
229 |
molecule_id: str,
|
230 |
-
data:
|
231 |
colors: ColorTransform,
|
232 |
axis_properties: AxisProperties,
|
233 |
dark_effective: bool,
|
@@ -242,16 +249,17 @@ def ProteinView(
|
|
242 |
# residue number to highlight in protein view
|
243 |
highlight_number = solara.use_reactive(None)
|
244 |
|
245 |
-
if data.
|
246 |
color_data = {}
|
247 |
else:
|
248 |
color_data = colors.molstar_colors(data)
|
|
|
249 |
tooltips = {
|
250 |
"data": [
|
251 |
{
|
252 |
"residue_number": resi,
|
253 |
"tooltip": f"{axis_properties.label}: {value:.2g} {axis_properties.unit}"
|
254 |
-
if
|
255 |
else "No data",
|
256 |
}
|
257 |
for resi, value in zip(data["residue_number"], data["value"])
|
@@ -317,7 +325,7 @@ def ProteinView(
|
|
317 |
).key(f"molstar-{dark_effective}")
|
318 |
if not fullscreen.value:
|
319 |
with solara.Card(style={"height": "550px"}):
|
320 |
-
if data.
|
321 |
solara.Text("No data")
|
322 |
else:
|
323 |
ScatterChart(
|
@@ -350,39 +358,3 @@ def RoutedView():
|
|
350 |
)
|
351 |
except KeyError as err:
|
352 |
solara.Warning(f"Error: {err}")
|
353 |
-
|
354 |
-
|
355 |
-
@solara.component
|
356 |
-
def Page():
|
357 |
-
dark_effective = solara.lab.use_dark_effective()
|
358 |
-
dark_previous = solara.use_previous(dark_effective)
|
359 |
-
|
360 |
-
if dark_previous != dark_effective:
|
361 |
-
if dark_effective:
|
362 |
-
alt.themes.enable("dark")
|
363 |
-
else:
|
364 |
-
alt.themes.enable("default")
|
365 |
-
|
366 |
-
solara.Style(
|
367 |
-
"""
|
368 |
-
.vega-embed {
|
369 |
-
overflow: visible;
|
370 |
-
width: 100% !important;
|
371 |
-
}"""
|
372 |
-
)
|
373 |
-
|
374 |
-
settings = json.loads(Path("settings.json").read_text())
|
375 |
-
|
376 |
-
colors = ColorTransform(**settings)
|
377 |
-
axis_properties = AxisProperties(**settings)
|
378 |
-
|
379 |
-
data = pd.read_csv("color_data.csv")
|
380 |
-
|
381 |
-
ProteinView(
|
382 |
-
settings["title"],
|
383 |
-
molecule_id=settings["molecule_id"],
|
384 |
-
data=data,
|
385 |
-
colors=colors,
|
386 |
-
axis_properties=axis_properties,
|
387 |
-
dark_effective=dark_effective,
|
388 |
-
)
|
|
|
11 |
import altair as alt
|
12 |
import ipywidgets as widgets
|
13 |
import numpy as np
|
14 |
+
import polars as pl
|
15 |
import solara
|
16 |
import solara.lab
|
17 |
from cmap import Colormap
|
|
|
36 |
missing_data_color: str = "#8c8c8c"
|
37 |
highlight_color: str = "#e933f8"
|
38 |
|
39 |
+
def molstar_colors(self, data: pl.DataFrame) -> dict:
|
40 |
+
data = data.drop_nulls()
|
41 |
if self.norm_type == "categorical":
|
42 |
values = data["value"]
|
43 |
else:
|
|
|
86 |
|
87 |
|
88 |
def make_chart(
|
89 |
+
data: pl.DataFrame, colors: ColorTransform, axis_properties: AxisProperties
|
90 |
) -> alt.LayerChart:
|
91 |
xmin, xmax = data["residue_number"].min(), data["residue_number"].max()
|
92 |
xpad = (xmax - xmin) * 0.05
|
|
|
164 |
|
165 |
line_position = alt.param(name="line_position", value=0.0)
|
166 |
line_opacity = alt.param(name="line_opacity", value=1)
|
167 |
+
df_line = pl.DataFrame({"x": [1.0]})
|
168 |
|
169 |
# Create vertical rule with parameter
|
170 |
vline = (
|
|
|
189 |
|
190 |
@solara.component
|
191 |
def ScatterChart(
|
192 |
+
data: pl.DataFrame,
|
193 |
colors: ColorTransform,
|
194 |
axis_properties: AxisProperties,
|
195 |
on_selections,
|
|
|
224 |
solara.use_effect(bind, [data, colors])
|
225 |
|
226 |
|
227 |
+
def is_numeric(val) -> bool:
|
228 |
+
if val is not None:
|
229 |
+
return not np.isnan(val)
|
230 |
+
return False
|
231 |
+
|
232 |
+
|
233 |
@solara.component
|
234 |
def ProteinView(
|
235 |
title: str,
|
236 |
molecule_id: str,
|
237 |
+
data: pl.DataFrame,
|
238 |
colors: ColorTransform,
|
239 |
axis_properties: AxisProperties,
|
240 |
dark_effective: bool,
|
|
|
249 |
# residue number to highlight in protein view
|
250 |
highlight_number = solara.use_reactive(None)
|
251 |
|
252 |
+
if data.is_empty():
|
253 |
color_data = {}
|
254 |
else:
|
255 |
color_data = colors.molstar_colors(data)
|
256 |
+
|
257 |
tooltips = {
|
258 |
"data": [
|
259 |
{
|
260 |
"residue_number": resi,
|
261 |
"tooltip": f"{axis_properties.label}: {value:.2g} {axis_properties.unit}"
|
262 |
+
if is_numeric(value)
|
263 |
else "No data",
|
264 |
}
|
265 |
for resi, value in zip(data["residue_number"], data["value"])
|
|
|
325 |
).key(f"molstar-{dark_effective}")
|
326 |
if not fullscreen.value:
|
327 |
with solara.Card(style={"height": "550px"}):
|
328 |
+
if data.is_empty():
|
329 |
solara.Text("No data")
|
330 |
else:
|
331 |
ScatterChart(
|
|
|
358 |
)
|
359 |
except KeyError as err:
|
360 |
solara.Warning(f"Error: {err}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|