Jhsmit commited on
Commit
dd5ed90
·
verified ·
1 Parent(s): 692d068

Delete interactive.py

Browse files
Files changed (1) hide show
  1. interactive.py +0 -166
interactive.py DELETED
@@ -1,166 +0,0 @@
1
- # %%
2
- from collections import defaultdict
3
-
4
- import altair as alt
5
- import matplotlib.pyplot as plt
6
- import pandas as pd
7
- from cmap import Colormap
8
- import polars as pl
9
-
10
- #%%
11
-
12
- df = pl.read_csv("example_data_bk.csv")
13
- df.columns
14
-
15
- df_crop = df[:, :3]
16
- df_crop
17
-
18
- df_crop.write_csv("example_data.csv")
19
- #%%
20
-
21
- # %%
22
- kwargs = {"comment": "#", "header": [0, 1], "index_col": 0}
23
- df = pd.read_csv("fit_result_batch.csv", **kwargs)
24
- # %%
25
- df
26
- # %%
27
-
28
-
29
- df_wt = df["SecB WT apo"].reset_index()
30
- df_dimer = df["SecB his dimer apo"].reset_index()
31
-
32
- AA_categories = {
33
- "pos": ["R", "H", "K"],
34
- "neg": ["D", "E"],
35
- "aromatic": ["F", "W", "Y"],
36
- "polar": ["S", "T", "N", "Q"],
37
- "nonpolar": ["A", "V", "I", "L", "M"],
38
- "other": ["G", "C", "P"],
39
- }
40
- cat_list = list(AA_categories)
41
- AA_lut = {aa: category for category in AA_categories for aa in AA_categories[category]}
42
- AA_lut
43
- aa_cat_numbers = [cat_list.index(AA_lut[aa]) for aa in df_wt["sequence"]]
44
- df_wt["aa_cat"] = aa_cat_numbers
45
-
46
- # %%
47
- cmap = Colormap("colorbrewer:Accent_6")
48
- sol = defaultdict(list)
49
- colors = cmap(df_wt["aa_cat"])
50
-
51
- nums = range(6)
52
- colors = cmap(nums)
53
-
54
- for n, c in zip(nums, colors):
55
- print(n, c)
56
- # %%
57
- len(cmap.color_stops)
58
-
59
- colors = cmap.to_altair(N=cmap.num_colors)
60
- domain = range(6)
61
- altair_scale = alt.Scale(domain=domain, range=colors, clamp=True)
62
- # %%
63
- alt.Chart(df_wt).mark_point().encode(
64
- x="r_number",
65
- y="aa_cat",
66
- color=alt.Color("aa_cat:N", scale=altair_scale),
67
- )
68
-
69
- # %%
70
- import pandas as pd
71
-
72
- df = pd.DataFrame({"a": [1, 2, 3, 4], "b": [7, 6, 5, 4], "c": ["a", "b", "b", "c"]})
73
-
74
- chart = alt.Chart(df).mark_point().encode(alt.X("a"), alt.Y("b"), alt.Color("c:N"))
75
- chart
76
- # %%
77
-
78
-
79
- # %%
80
-
81
-
82
- ddG = df_wt["deltaG"] - df_dimer["deltaG"]
83
- ddG
84
-
85
-
86
- # %%
87
-
88
- fig, ax = plt.subplots()
89
- ax.scatter(df_wt["r_number"], df_wt["deltaG"])
90
-
91
- # %%
92
- fig, ax = plt.subplots()
93
- ax.scatter(df_wt["r_number"], ddG)
94
-
95
- # %%
96
- df_wt.columns
97
- # %%
98
-
99
- output = pd.DataFrame(
100
- {
101
- "r_number": df_wt["r_number"],
102
- "SecB tetramer ΔG": df_wt["deltaG"],
103
- "dimer ΔΔG": ddG,
104
- "aa_category": df_wt["aa_cat"],
105
- }
106
- )
107
- output = output.set_index("r_number")
108
-
109
- output
110
- # %%
111
- import numpy as np
112
-
113
- N = 150
114
- fuzzy_sin = 0.5 * (1 + np.sin(np.arange(N) / 10.0)) + np.random.normal(
115
- loc=0, scale=0.1, size=N
116
- )
117
- df = pd.DataFrame({"fuzzy_sin": fuzzy_sin})
118
- df
119
-
120
-
121
-
122
- # add series to output dataframe a a column
123
-
124
- output["fuzzy_sin"] = series
125
- output
126
- # %%
127
-
128
- output.to_csv("SecB_data.csv")
129
- # %%
130
-
131
- dir(cmap)
132
- cmap.category
133
-
134
- # %%
135
-
136
- tol_cmap = Colormap("tol:rainbow_discrete_7")
137
- tol_cmap.category
138
- tol_cmap.num_colors
139
- tol_cmap.interpolation
140
-
141
- # %%
142
-
143
- tol_cmap = Colormap("vispy:hsl")
144
- tol_cmap.category
145
- tol_cmap.num_colors
146
- tol_cmap.interpolation
147
-
148
-
149
- # %%
150
- tol_cmap = Colormap("yorick:stern")
151
- tol_cmap.category
152
- tol_cmap.num_colors
153
- tol_cmap.interpolation
154
- # %%
155
- tol_cmap = Colormap("tol:rainbow_whbr")
156
- tol_cmap.category
157
- tol_cmap.num_colors
158
- tol_cmap.interpolation
159
- # %%
160
- tol_cmap = Colormap("glasbey:glasbey")
161
- tol_cmap.category
162
- tol_cmap.num_colors
163
- # tol_cmap.interpolation
164
-
165
-
166
- # %%