Delete interactive.py
Browse files- interactive.py +0 -166
interactive.py
DELETED
@@ -1,166 +0,0 @@
|
|
1 |
-
# %%
|
2 |
-
from collections import defaultdict
|
3 |
-
|
4 |
-
import altair as alt
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
import pandas as pd
|
7 |
-
from cmap import Colormap
|
8 |
-
import polars as pl
|
9 |
-
|
10 |
-
#%%
|
11 |
-
|
12 |
-
df = pl.read_csv("example_data_bk.csv")
|
13 |
-
df.columns
|
14 |
-
|
15 |
-
df_crop = df[:, :3]
|
16 |
-
df_crop
|
17 |
-
|
18 |
-
df_crop.write_csv("example_data.csv")
|
19 |
-
#%%
|
20 |
-
|
21 |
-
# %%
|
22 |
-
kwargs = {"comment": "#", "header": [0, 1], "index_col": 0}
|
23 |
-
df = pd.read_csv("fit_result_batch.csv", **kwargs)
|
24 |
-
# %%
|
25 |
-
df
|
26 |
-
# %%
|
27 |
-
|
28 |
-
|
29 |
-
df_wt = df["SecB WT apo"].reset_index()
|
30 |
-
df_dimer = df["SecB his dimer apo"].reset_index()
|
31 |
-
|
32 |
-
AA_categories = {
|
33 |
-
"pos": ["R", "H", "K"],
|
34 |
-
"neg": ["D", "E"],
|
35 |
-
"aromatic": ["F", "W", "Y"],
|
36 |
-
"polar": ["S", "T", "N", "Q"],
|
37 |
-
"nonpolar": ["A", "V", "I", "L", "M"],
|
38 |
-
"other": ["G", "C", "P"],
|
39 |
-
}
|
40 |
-
cat_list = list(AA_categories)
|
41 |
-
AA_lut = {aa: category for category in AA_categories for aa in AA_categories[category]}
|
42 |
-
AA_lut
|
43 |
-
aa_cat_numbers = [cat_list.index(AA_lut[aa]) for aa in df_wt["sequence"]]
|
44 |
-
df_wt["aa_cat"] = aa_cat_numbers
|
45 |
-
|
46 |
-
# %%
|
47 |
-
cmap = Colormap("colorbrewer:Accent_6")
|
48 |
-
sol = defaultdict(list)
|
49 |
-
colors = cmap(df_wt["aa_cat"])
|
50 |
-
|
51 |
-
nums = range(6)
|
52 |
-
colors = cmap(nums)
|
53 |
-
|
54 |
-
for n, c in zip(nums, colors):
|
55 |
-
print(n, c)
|
56 |
-
# %%
|
57 |
-
len(cmap.color_stops)
|
58 |
-
|
59 |
-
colors = cmap.to_altair(N=cmap.num_colors)
|
60 |
-
domain = range(6)
|
61 |
-
altair_scale = alt.Scale(domain=domain, range=colors, clamp=True)
|
62 |
-
# %%
|
63 |
-
alt.Chart(df_wt).mark_point().encode(
|
64 |
-
x="r_number",
|
65 |
-
y="aa_cat",
|
66 |
-
color=alt.Color("aa_cat:N", scale=altair_scale),
|
67 |
-
)
|
68 |
-
|
69 |
-
# %%
|
70 |
-
import pandas as pd
|
71 |
-
|
72 |
-
df = pd.DataFrame({"a": [1, 2, 3, 4], "b": [7, 6, 5, 4], "c": ["a", "b", "b", "c"]})
|
73 |
-
|
74 |
-
chart = alt.Chart(df).mark_point().encode(alt.X("a"), alt.Y("b"), alt.Color("c:N"))
|
75 |
-
chart
|
76 |
-
# %%
|
77 |
-
|
78 |
-
|
79 |
-
# %%
|
80 |
-
|
81 |
-
|
82 |
-
ddG = df_wt["deltaG"] - df_dimer["deltaG"]
|
83 |
-
ddG
|
84 |
-
|
85 |
-
|
86 |
-
# %%
|
87 |
-
|
88 |
-
fig, ax = plt.subplots()
|
89 |
-
ax.scatter(df_wt["r_number"], df_wt["deltaG"])
|
90 |
-
|
91 |
-
# %%
|
92 |
-
fig, ax = plt.subplots()
|
93 |
-
ax.scatter(df_wt["r_number"], ddG)
|
94 |
-
|
95 |
-
# %%
|
96 |
-
df_wt.columns
|
97 |
-
# %%
|
98 |
-
|
99 |
-
output = pd.DataFrame(
|
100 |
-
{
|
101 |
-
"r_number": df_wt["r_number"],
|
102 |
-
"SecB tetramer ΔG": df_wt["deltaG"],
|
103 |
-
"dimer ΔΔG": ddG,
|
104 |
-
"aa_category": df_wt["aa_cat"],
|
105 |
-
}
|
106 |
-
)
|
107 |
-
output = output.set_index("r_number")
|
108 |
-
|
109 |
-
output
|
110 |
-
# %%
|
111 |
-
import numpy as np
|
112 |
-
|
113 |
-
N = 150
|
114 |
-
fuzzy_sin = 0.5 * (1 + np.sin(np.arange(N) / 10.0)) + np.random.normal(
|
115 |
-
loc=0, scale=0.1, size=N
|
116 |
-
)
|
117 |
-
df = pd.DataFrame({"fuzzy_sin": fuzzy_sin})
|
118 |
-
df
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
# add series to output dataframe a a column
|
123 |
-
|
124 |
-
output["fuzzy_sin"] = series
|
125 |
-
output
|
126 |
-
# %%
|
127 |
-
|
128 |
-
output.to_csv("SecB_data.csv")
|
129 |
-
# %%
|
130 |
-
|
131 |
-
dir(cmap)
|
132 |
-
cmap.category
|
133 |
-
|
134 |
-
# %%
|
135 |
-
|
136 |
-
tol_cmap = Colormap("tol:rainbow_discrete_7")
|
137 |
-
tol_cmap.category
|
138 |
-
tol_cmap.num_colors
|
139 |
-
tol_cmap.interpolation
|
140 |
-
|
141 |
-
# %%
|
142 |
-
|
143 |
-
tol_cmap = Colormap("vispy:hsl")
|
144 |
-
tol_cmap.category
|
145 |
-
tol_cmap.num_colors
|
146 |
-
tol_cmap.interpolation
|
147 |
-
|
148 |
-
|
149 |
-
# %%
|
150 |
-
tol_cmap = Colormap("yorick:stern")
|
151 |
-
tol_cmap.category
|
152 |
-
tol_cmap.num_colors
|
153 |
-
tol_cmap.interpolation
|
154 |
-
# %%
|
155 |
-
tol_cmap = Colormap("tol:rainbow_whbr")
|
156 |
-
tol_cmap.category
|
157 |
-
tol_cmap.num_colors
|
158 |
-
tol_cmap.interpolation
|
159 |
-
# %%
|
160 |
-
tol_cmap = Colormap("glasbey:glasbey")
|
161 |
-
tol_cmap.category
|
162 |
-
tol_cmap.num_colors
|
163 |
-
# tol_cmap.interpolation
|
164 |
-
|
165 |
-
|
166 |
-
# %%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|