Spaces:
Sleeping
Sleeping
Jiahuita
commited on
Commit
•
60dc372
1
Parent(s):
aef9aa2
initial commit
Browse files- Dockerfile +22 -0
- README copy.md +97 -0
- app.py +87 -0
- news_classifier.h5 +3 -0
- requirements.txt +7 -0
- tokenizer.json +0 -0
Dockerfile
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9-slim
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
# Install system dependencies
|
6 |
+
RUN apt-get update && apt-get install -y \
|
7 |
+
build-essential \
|
8 |
+
curl \
|
9 |
+
&& rm -rf /var/lib/apt/lists/*
|
10 |
+
|
11 |
+
# Copy requirements first to leverage Docker cache
|
12 |
+
COPY requirements.txt .
|
13 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
14 |
+
|
15 |
+
# Copy the rest of the application
|
16 |
+
COPY . .
|
17 |
+
|
18 |
+
# Expose the port the app runs on
|
19 |
+
EXPOSE 7860
|
20 |
+
|
21 |
+
# Command to run the application
|
22 |
+
CMD ["python", "-m", "uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README copy.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: News Source Classifier
|
3 |
+
emoji: 📰
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
+
sdk: fastapi
|
7 |
+
sdk_version: 0.95.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
language: en
|
11 |
+
license: mit
|
12 |
+
tags:
|
13 |
+
- text-classification
|
14 |
+
- news-classification
|
15 |
+
- LSTM
|
16 |
+
- tensorflow
|
17 |
+
pipeline_tag: text-classification
|
18 |
+
widget:
|
19 |
+
- example_title: "Crime News Headline"
|
20 |
+
text: "Wife of murdered Minnesota pastor hired 3 men to kill husband after affair: police"
|
21 |
+
- example_title: "Science News Headline"
|
22 |
+
text: "Scientists discover breakthrough in renewable energy research"
|
23 |
+
- example_title: "Political News Headline"
|
24 |
+
text: "Presidential candidates face off in heated debate over climate policies"
|
25 |
+
model-index:
|
26 |
+
- name: News Source Classifier
|
27 |
+
results:
|
28 |
+
- task:
|
29 |
+
type: text-classification
|
30 |
+
name: Text Classification
|
31 |
+
dataset:
|
32 |
+
name: Custom Dataset
|
33 |
+
type: Custom
|
34 |
+
metrics:
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.82
|
38 |
+
---
|
39 |
+
|
40 |
+
# News Source Classifier
|
41 |
+
|
42 |
+
This model classifies news headlines as either Fox News or NBC News using an LSTM neural network.
|
43 |
+
|
44 |
+
## Model Description
|
45 |
+
|
46 |
+
- **Model Architecture**: LSTM Neural Network
|
47 |
+
- **Input**: News headlines (text)
|
48 |
+
- **Output**: Binary classification (Fox News vs NBC)
|
49 |
+
- **Training Data**: Large collection of headlines from both news sources
|
50 |
+
- **Performance**: Achieves approximately 82% accuracy on the test set
|
51 |
+
|
52 |
+
## Usage
|
53 |
+
|
54 |
+
You can use this model directly with a FastAPI endpoint:
|
55 |
+
|
56 |
+
```python
|
57 |
+
import requests
|
58 |
+
|
59 |
+
response = requests.post(
|
60 |
+
"https://huggingface.co/Jiahuita/NewsSourceClassification",
|
61 |
+
json={"text": "Your news headline here"}
|
62 |
+
)
|
63 |
+
print(response.json())
|
64 |
+
```
|
65 |
+
|
66 |
+
Or use it locally:
|
67 |
+
|
68 |
+
```python
|
69 |
+
from transformers import pipeline
|
70 |
+
|
71 |
+
classifier = pipeline("text-classification", model="Jiahuita/NewsSourceClassification")
|
72 |
+
result = classifier("Your news headline here")
|
73 |
+
print(result)
|
74 |
+
```
|
75 |
+
|
76 |
+
Example response:
|
77 |
+
```json
|
78 |
+
{
|
79 |
+
"label": "foxnews",
|
80 |
+
"score": 0.875
|
81 |
+
}
|
82 |
+
```
|
83 |
+
|
84 |
+
## Limitations and Bias
|
85 |
+
|
86 |
+
This model has been trained on news headlines from specific sources and time periods, which may introduce certain biases. Users should be aware of these limitations when using the model.
|
87 |
+
|
88 |
+
## Training
|
89 |
+
|
90 |
+
The model was trained using:
|
91 |
+
- TensorFlow 2.13.0
|
92 |
+
- LSTM architecture
|
93 |
+
- Binary cross-entropy loss
|
94 |
+
- Adam optimizer
|
95 |
+
|
96 |
+
## License
|
97 |
+
This project is licensed under the MIT License.
|
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
5 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
6 |
+
import numpy as np
|
7 |
+
import json
|
8 |
+
from typing import Union, List
|
9 |
+
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
# Global variables for model and tokenizer
|
13 |
+
model = None
|
14 |
+
tokenizer = None
|
15 |
+
|
16 |
+
def load_model_and_tokenizer():
|
17 |
+
global model, tokenizer
|
18 |
+
try:
|
19 |
+
model = load_model('news_classifier.h5')
|
20 |
+
with open('tokenizer.json', 'r') as f:
|
21 |
+
tokenizer_data = json.load(f)
|
22 |
+
tokenizer = tokenizer_from_json(tokenizer_data)
|
23 |
+
except Exception as e:
|
24 |
+
print(f"Error loading model or tokenizer: {str(e)}")
|
25 |
+
raise e
|
26 |
+
|
27 |
+
# Load on startup
|
28 |
+
load_model_and_tokenizer()
|
29 |
+
|
30 |
+
class PredictionInput(BaseModel):
|
31 |
+
text: Union[str, List[str]]
|
32 |
+
|
33 |
+
class PredictionOutput(BaseModel):
|
34 |
+
label: str
|
35 |
+
score: float
|
36 |
+
|
37 |
+
@app.get("/")
|
38 |
+
def read_root():
|
39 |
+
return {
|
40 |
+
"message": "News Source Classifier API",
|
41 |
+
"model_type": "LSTM",
|
42 |
+
"version": "1.0",
|
43 |
+
"status": "ready" if model and tokenizer else "not_loaded"
|
44 |
+
}
|
45 |
+
|
46 |
+
@app.post("/predict", response_model=Union[PredictionOutput, List[PredictionOutput]])
|
47 |
+
async def predict(input_data: PredictionInput):
|
48 |
+
if not model or not tokenizer:
|
49 |
+
try:
|
50 |
+
load_model_and_tokenizer()
|
51 |
+
except Exception as e:
|
52 |
+
raise HTTPException(status_code=500, detail="Model not loaded")
|
53 |
+
|
54 |
+
try:
|
55 |
+
# Handle both single string and list inputs
|
56 |
+
texts = input_data.text if isinstance(input_data.text, list) else [input_data.text]
|
57 |
+
|
58 |
+
# Preprocess
|
59 |
+
sequences = tokenizer.texts_to_sequences(texts)
|
60 |
+
padded = pad_sequences(sequences, maxlen=41) # Match your model's input length
|
61 |
+
|
62 |
+
# Get predictions
|
63 |
+
predictions = model.predict(padded, verbose=0)
|
64 |
+
|
65 |
+
# Process results
|
66 |
+
results = []
|
67 |
+
for pred in predictions:
|
68 |
+
label = "foxnews" if pred[1] > 0.5 else "nbc"
|
69 |
+
score = float(pred[1] if label == "foxnews" else 1 - pred[1])
|
70 |
+
results.append({
|
71 |
+
"label": label,
|
72 |
+
"score": score
|
73 |
+
})
|
74 |
+
|
75 |
+
# Return single result if input was single string
|
76 |
+
return results[0] if isinstance(input_data.text, str) else results
|
77 |
+
|
78 |
+
except Exception as e:
|
79 |
+
raise HTTPException(status_code=500, detail=str(e))
|
80 |
+
|
81 |
+
@app.post("/reload")
|
82 |
+
async def reload_model():
|
83 |
+
try:
|
84 |
+
load_model_and_tokenizer()
|
85 |
+
return {"message": "Model reloaded successfully"}
|
86 |
+
except Exception as e:
|
87 |
+
raise HTTPException(status_code=500, detail=str(e))
|
news_classifier.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9258ee4d92199555974374b569634e73ad0d2b059d3b7125f3b75c2144528f4
|
3 |
+
size 117315152
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow>=2.10.0
|
2 |
+
fastapi>=0.68.0
|
3 |
+
uvicorn>=0.15.0
|
4 |
+
pydantic>=1.8.2
|
5 |
+
numpy>=1.19.2
|
6 |
+
python-multipart
|
7 |
+
scikit-learn>=0.24.2
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|