Last commit not found
import os | |
os.environ["GIT_CLONE_PROTECTION_ACTIVE"] = "false" | |
from pathlib import Path | |
import requests | |
import shutil | |
import io | |
from pathlib import Path | |
import openvino as ov | |
import torch | |
from transformers import ( | |
TextIteratorStreamer, | |
StoppingCriteria, | |
StoppingCriteriaList, | |
) | |
from llm_config import ( | |
SUPPORTED_EMBEDDING_MODELS, | |
SUPPORTED_RERANK_MODELS, | |
SUPPORTED_LLM_MODELS, | |
) | |
from huggingface_hub import login | |
config_shared_path = Path("../../utils/llm_config.py") | |
config_dst_path = Path("llm_config.py") | |
text_example_en_path = Path("text_example_en.pdf") | |
text_example_cn_path = Path("text_example_cn.pdf") | |
text_example_en = "https://github.com/openvinotoolkit/openvino_notebooks/files/15039728/Platform.Brief_Intel.vPro.with.Intel.Core.Ultra_Final.pdf" | |
text_example_cn = "https://github.com/openvinotoolkit/openvino_notebooks/files/15039713/Platform.Brief_Intel.vPro.with.Intel.Core.Ultra_Final_CH.pdf" | |
if not config_dst_path.exists(): | |
if config_shared_path.exists(): | |
try: | |
os.symlink(config_shared_path, config_dst_path) | |
except Exception: | |
shutil.copy(config_shared_path, config_dst_path) | |
else: | |
r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/llm_config.py") | |
with open("llm_config.py", "w", encoding="utf-8") as f: | |
f.write(r.text) | |
elif not os.path.islink(config_dst_path): | |
print("LLM config will be updated") | |
if config_shared_path.exists(): | |
shutil.copy(config_shared_path, config_dst_path) | |
else: | |
r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/llm_config.py") | |
with open("llm_config.py", "w", encoding="utf-8") as f: | |
f.write(r.text) | |
if not text_example_en_path.exists(): | |
r = requests.get(url=text_example_en) | |
content = io.BytesIO(r.content) | |
with open("text_example_en.pdf", "wb") as f: | |
f.write(content.read()) | |
if not text_example_cn_path.exists(): | |
r = requests.get(url=text_example_cn) | |
content = io.BytesIO(r.content) | |
with open("text_example_cn.pdf", "wb") as f: | |
f.write(content.read()) | |
model_language = "English" | |
llm_model_id= "llama-3-8b-instruct" | |
llm_model_configuration = SUPPORTED_LLM_MODELS[model_language][llm_model_id] | |
print(f"Selected LLM model {llm_model_id}") | |
prepare_int4_model = True # Prepare INT4 model | |
prepare_int8_model = False # Do not prepare INT8 model | |
prepare_fp16_model = False # Do not prepare FP16 model | |
enable_awq = False | |
# Get the token from the environment variable | |
hf_token = os.getenv("HUGGINGFACE_TOKEN") | |
if hf_token is None: | |
raise ValueError( | |
"HUGGINGFACE_TOKEN environment variable not set. " | |
"Please set it in your environment variables or repository secrets." | |
) | |
# Log in to Hugging Face Hub | |
login(token=hf_token) | |
pt_model_id = llm_model_configuration["model_id"] | |
# pt_model_name = llm_model_id.value.split("-")[0] | |
fp16_model_dir = Path(llm_model_id) / "FP16" | |
int8_model_dir = Path(llm_model_id) / "INT8_compressed_weights" | |
int4_model_dir = Path(llm_model_id) / "INT4_compressed_weights" | |
def convert_to_fp16(): | |
if (fp16_model_dir / "openvino_model.xml").exists(): | |
return | |
remote_code = llm_model_configuration.get("remote_code", False) | |
export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format fp16".format(pt_model_id) | |
if remote_code: | |
export_command_base += " --trust-remote-code" | |
export_command = export_command_base + " " + str(fp16_model_dir) | |
def convert_to_int8(): | |
if (int8_model_dir / "openvino_model.xml").exists(): | |
return | |
int8_model_dir.mkdir(parents=True, exist_ok=True) | |
remote_code = llm_model_configuration.get("remote_code", False) | |
export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int8".format(pt_model_id) | |
if remote_code: | |
export_command_base += " --trust-remote-code" | |
export_command = export_command_base + " " + str(int8_model_dir) | |
def convert_to_int4(): | |
compression_configs = { | |
"zephyr-7b-beta": { | |
"sym": True, | |
"group_size": 64, | |
"ratio": 0.6, | |
}, | |
"mistral-7b": { | |
"sym": True, | |
"group_size": 64, | |
"ratio": 0.6, | |
}, | |
"minicpm-2b-dpo": { | |
"sym": True, | |
"group_size": 64, | |
"ratio": 0.6, | |
}, | |
"gemma-2b-it": { | |
"sym": True, | |
"group_size": 64, | |
"ratio": 0.6, | |
}, | |
"notus-7b-v1": { | |
"sym": True, | |
"group_size": 64, | |
"ratio": 0.6, | |
}, | |
"neural-chat-7b-v3-1": { | |
"sym": True, | |
"group_size": 64, | |
"ratio": 0.6, | |
}, | |
"llama-2-chat-7b": { | |
"sym": True, | |
"group_size": 128, | |
"ratio": 0.8, | |
}, | |
"llama-3-8b-instruct": { | |
"sym": True, | |
"group_size": 128, | |
"ratio": 0.8, | |
}, | |
"gemma-7b-it": { | |
"sym": True, | |
"group_size": 128, | |
"ratio": 0.8, | |
}, | |
"chatglm2-6b": { | |
"sym": True, | |
"group_size": 128, | |
"ratio": 0.72, | |
}, | |
"qwen-7b-chat": {"sym": True, "group_size": 128, "ratio": 0.6}, | |
"red-pajama-3b-chat": { | |
"sym": False, | |
"group_size": 128, | |
"ratio": 0.5, | |
}, | |
"default": { | |
"sym": False, | |
"group_size": 128, | |
"ratio": 0.8, | |
}, | |
} | |
model_compression_params = compression_configs.get(llm_model_id, compression_configs["default"]) | |
if (int4_model_dir / "openvino_model.xml").exists(): | |
return | |
remote_code = llm_model_configuration.get("remote_code", False) | |
export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int4".format(pt_model_id) | |
int4_compression_args = " --group-size {} --ratio {}".format(model_compression_params["group_size"], model_compression_params["ratio"]) | |
if model_compression_params["sym"]: | |
int4_compression_args += " --sym" | |
print("updated") | |
if enable_awq: | |
int4_compression_args += " --awq --dataset wikitext2 --num-samples 128" | |
export_command_base += int4_compression_args | |
if remote_code: | |
export_command_base += " --trust-remote-code" | |
# export_command = export_command_base + " " + str(int4_model_dir) | |
if prepare_fp16_model: | |
convert_to_fp16() | |
if prepare_int8_model: | |
convert_to_int8() | |
if prepare_int4_model: | |
convert_to_int4() | |
fp16_weights = fp16_model_dir / "openvino_model.bin" | |
int8_weights = int8_model_dir / "openvino_model.bin" | |
int4_weights = int4_model_dir / "openvino_model.bin" | |
if fp16_weights.exists(): | |
print(f"Size of FP16 model is {fp16_weights.stat().st_size / 1024 / 1024:.2f} MB") | |
for precision, compressed_weights in zip([8, 4], [int8_weights, int4_weights]): | |
if compressed_weights.exists(): | |
print(f"Size of model with INT{precision} compressed weights is {compressed_weights.stat().st_size / 1024 / 1024:.2f} MB") | |
if compressed_weights.exists() and fp16_weights.exists(): | |
print(f"Compression rate for INT{precision} model: {fp16_weights.stat().st_size / compressed_weights.stat().st_size:.3f}") | |
embedding_model_id = 'bge-small-en-v1.5' #'bge-small-en-v1.5', 'bge-large-en-v1.5', 'bge-m3'), value='bge-small-en-v1.5' | |
embedding_model_configuration = SUPPORTED_EMBEDDING_MODELS[model_language][embedding_model_id] | |
print(f"Selected {embedding_model_id} model") | |
export_command_base = "optimum-cli export openvino --model {} --task feature-extraction".format(embedding_model_configuration["model_id"]) | |
export_command = export_command_base + " " + str(embedding_model_id) | |
rerank_model_id = "bge-reranker-v2-m3" #'bge-reranker-v2-m3', 'bge-reranker-large', 'bge-reranker-base') | |
rerank_model_configuration = SUPPORTED_RERANK_MODELS[rerank_model_id] | |
print(f"Selected {rerank_model_id} model") | |
export_command_base = "optimum-cli export openvino --model {} --task text-classification".format(rerank_model_configuration["model_id"]) | |
export_command = export_command_base + " " + str(rerank_model_id) | |
embedding_device = "CPU" | |
USING_NPU = embedding_device == "NPU" | |
npu_embedding_dir = embedding_model_id + "-npu" | |
npu_embedding_path = Path(npu_embedding_dir) / "openvino_model.xml" | |
if USING_NPU and not Path(npu_embedding_dir).exists(): | |
r = requests.get( | |
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py", | |
) | |
with open("notebook_utils.py", "w") as f: | |
f.write(r.text) | |
import notebook_utils as utils | |
shutil.copytree(embedding_model_id, npu_embedding_dir) | |
utils.optimize_bge_embedding(Path(embedding_model_id) / "openvino_model.xml", npu_embedding_path) | |
rerank_device = "CPU" | |
llm_device = "CPU" | |
from langchain_community.embeddings import OpenVINOBgeEmbeddings | |
embedding_model_name = npu_embedding_dir if USING_NPU else embedding_model_id | |
batch_size = 1 if USING_NPU else 4 | |
embedding_model_kwargs = {"device": embedding_device, "compile": False} | |
encode_kwargs = { | |
"mean_pooling": embedding_model_configuration["mean_pooling"], | |
"normalize_embeddings": embedding_model_configuration["normalize_embeddings"], | |
"batch_size": batch_size, | |
} | |
embedding = OpenVINOBgeEmbeddings( | |
model_name_or_path=embedding_model_name, | |
model_kwargs=embedding_model_kwargs, | |
encode_kwargs=encode_kwargs, | |
) | |
if USING_NPU: | |
embedding.ov_model.reshape(1, 512) | |
embedding.ov_model.compile() | |
text = "This is a test document." | |
embedding_result = embedding.embed_query(text) | |
embedding_result[:3] | |
from langchain_community.document_compressors.openvino_rerank import OpenVINOReranker | |
rerank_model_name = rerank_model_id | |
rerank_model_kwargs = {"device": rerank_device} | |
rerank_top_n = 2 | |
reranker = OpenVINOReranker( | |
model_name_or_path=rerank_model_name, | |
model_kwargs=rerank_model_kwargs, | |
top_n=rerank_top_n, | |
) | |
model_to_run = "INT4" | |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline | |
if model_to_run == "INT4": | |
model_dir = int4_model_dir | |
elif model_to_run == "INT8": | |
model_dir = int8_model_dir | |
else: | |
model_dir = fp16_model_dir | |
print(f"Loading model from {model_dir}") | |
ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""} | |
if "GPU" in llm_device and "qwen2-7b-instruct" in llm_model_id: | |
ov_config["GPU_ENABLE_SDPA_OPTIMIZATION"] = "NO" | |
# On a GPU device a model is executed in FP16 precision. For red-pajama-3b-chat model there known accuracy | |
# issues caused by this, which we avoid by setting precision hint to "f32". | |
if llm_model_id == "red-pajama-3b-chat" and "GPU" in core.available_devices and llm_device in ["GPU", "AUTO"]: | |
ov_config["INFERENCE_PRECISION_HINT"] = "f32" | |
llm = HuggingFacePipeline.from_model_id( | |
model_id=str(model_dir), | |
task="text-generation", | |
backend="openvino", | |
model_kwargs={ | |
"device": llm_device, | |
"ov_config": ov_config, | |
"trust_remote_code": True, | |
}, | |
pipeline_kwargs={"max_new_tokens": 2}, | |
) | |
llm.invoke("2 + 2 =") | |
import re | |
from typing import List | |
from langchain.text_splitter import ( | |
CharacterTextSplitter, | |
RecursiveCharacterTextSplitter, | |
MarkdownTextSplitter, | |
) | |
from langchain.document_loaders import ( | |
CSVLoader, | |
EverNoteLoader, | |
PyPDFLoader, | |
TextLoader, | |
UnstructuredEPubLoader, | |
UnstructuredHTMLLoader, | |
UnstructuredMarkdownLoader, | |
UnstructuredODTLoader, | |
UnstructuredPowerPointLoader, | |
UnstructuredWordDocumentLoader, | |
) | |
class ChineseTextSplitter(CharacterTextSplitter): | |
def __init__(self, pdf: bool = False, **kwargs): | |
super().__init__(**kwargs) | |
self.pdf = pdf | |
def split_text(self, text: str) -> List[str]: | |
if self.pdf: | |
text = re.sub(r"\n{3,}", "\n", text) | |
text = text.replace("\n\n", "") | |
sent_sep_pattern = re.compile('([﹒﹔﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))') | |
sent_list = [] | |
for ele in sent_sep_pattern.split(text): | |
if sent_sep_pattern.match(ele) and sent_list: | |
sent_list[-1] += ele | |
elif ele: | |
sent_list.append(ele) | |
return sent_list | |
TEXT_SPLITERS = { | |
"Character": CharacterTextSplitter, | |
"RecursiveCharacter": RecursiveCharacterTextSplitter, | |
"Markdown": MarkdownTextSplitter, | |
"Chinese": ChineseTextSplitter, | |
} | |
LOADERS = { | |
".csv": (CSVLoader, {}), | |
".doc": (UnstructuredWordDocumentLoader, {}), | |
".docx": (UnstructuredWordDocumentLoader, {}), | |
".enex": (EverNoteLoader, {}), | |
".epub": (UnstructuredEPubLoader, {}), | |
".html": (UnstructuredHTMLLoader, {}), | |
".md": (UnstructuredMarkdownLoader, {}), | |
".odt": (UnstructuredODTLoader, {}), | |
".pdf": (PyPDFLoader, {}), | |
".ppt": (UnstructuredPowerPointLoader, {}), | |
".pptx": (UnstructuredPowerPointLoader, {}), | |
".txt": (TextLoader, {"encoding": "utf8"}), | |
} | |
chinese_examples = [ | |
["英特尔®酷睿™ Ultra处理器可以降低多少功耗?"], | |
["相比英特尔之前的移动处理器产品,英特尔®酷睿™ Ultra处理器的AI推理性能提升了多少?"], | |
["英特尔博锐® Enterprise系统提供哪些功能?"], | |
] | |
english_examples = [ | |
["How much power consumption can Intel® Core™ Ultra Processors help save?"], | |
["Compared to Intel’s previous mobile processor, what is the advantage of Intel® Core™ Ultra Processors for Artificial Intelligence?"], | |
["What can Intel vPro® Enterprise systems offer?"], | |
] | |
if model_language == "English": | |
# text_example_path = "text_example_en.pdf" | |
text_example_path = ['Supervisors-Guide-Accurate-Timekeeping_AH edits.docx','Salary-vs-Hourly-Guide_AH edits.docx','Employee-Guide-Accurate-Timekeeping_AH edits.docx','Eller Overtime Guidelines.docx','Eller FLSA information 9.2024_AH edits.docx','Accurate Timekeeping Supervisors 12.2.20_AH edits.docx'] | |
else: | |
text_example_path = "text_example_cn.pdf" | |
examples = chinese_examples if (model_language == "Chinese") else english_examples | |
from langchain.prompts import PromptTemplate | |
from langchain_community.vectorstores import FAISS | |
from langchain.chains.retrieval import create_retrieval_chain | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain.docstore.document import Document | |
from langchain.retrievers import ContextualCompressionRetriever | |
from threading import Thread | |
import gradio as gr | |
stop_tokens = llm_model_configuration.get("stop_tokens") | |
rag_prompt_template = llm_model_configuration["rag_prompt_template"] | |
class StopOnTokens(StoppingCriteria): | |
def __init__(self, token_ids): | |
self.token_ids = token_ids | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
for stop_id in self.token_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
if stop_tokens is not None: | |
if isinstance(stop_tokens[0], str): | |
stop_tokens = llm.pipeline.tokenizer.convert_tokens_to_ids(stop_tokens) | |
stop_tokens = [StopOnTokens(stop_tokens)] | |
def load_single_document(file_path: str) -> List[Document]: | |
""" | |
helper for loading a single document | |
Params: | |
file_path: document path | |
Returns: | |
documents loaded | |
""" | |
ext = "." + file_path.rsplit(".", 1)[-1] | |
if ext in LOADERS: | |
loader_class, loader_args = LOADERS[ext] | |
loader = loader_class(file_path, **loader_args) | |
return loader.load() | |
raise ValueError(f"File does not exist '{ext}'") | |
def default_partial_text_processor(partial_text: str, new_text: str): | |
""" | |
helper for updating partially generated answer, used by default | |
Params: | |
partial_text: text buffer for storing previosly generated text | |
new_text: text update for the current step | |
Returns: | |
updated text string | |
""" | |
partial_text += new_text | |
return partial_text | |
text_processor = llm_model_configuration.get("partial_text_processor", default_partial_text_processor) | |
def create_vectordb( | |
docs, spliter_name, chunk_size, chunk_overlap, vector_search_top_k, vector_rerank_top_n, run_rerank, search_method, score_threshold, progress=gr.Progress() | |
): | |
""" | |
Initialize a vector database | |
Params: | |
doc: orignal documents provided by user | |
spliter_name: spliter method | |
chunk_size: size of a single sentence chunk | |
chunk_overlap: overlap size between 2 chunks | |
vector_search_top_k: Vector search top k | |
vector_rerank_top_n: Search rerank top n | |
run_rerank: whether run reranker | |
search_method: top k search method | |
score_threshold: score threshold when selecting 'similarity_score_threshold' method | |
""" | |
global db | |
global retriever | |
global combine_docs_chain | |
global rag_chain | |
if vector_rerank_top_n > vector_search_top_k: | |
gr.Warning("Search top k must >= Rerank top n") | |
documents = [] | |
for doc in docs: | |
if type(doc) is not str: | |
doc = doc.name | |
documents.extend(load_single_document(doc)) | |
text_splitter = TEXT_SPLITERS[spliter_name](chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
texts = text_splitter.split_documents(documents) | |
db = FAISS.from_documents(texts, embedding) | |
if search_method == "similarity_score_threshold": | |
search_kwargs = {"k": vector_search_top_k, "score_threshold": score_threshold} | |
else: | |
search_kwargs = {"k": vector_search_top_k} | |
retriever = db.as_retriever(search_kwargs=search_kwargs, search_type=search_method) | |
if run_rerank: | |
reranker.top_n = vector_rerank_top_n | |
retriever = ContextualCompressionRetriever(base_compressor=reranker, base_retriever=retriever) | |
prompt = PromptTemplate.from_template(rag_prompt_template) | |
combine_docs_chain = create_stuff_documents_chain(llm, prompt) | |
rag_chain = create_retrieval_chain(retriever, combine_docs_chain) | |
return "Vector database is Ready" | |
def update_retriever(vector_search_top_k, vector_rerank_top_n, run_rerank, search_method, score_threshold): | |
""" | |
Update retriever | |
Params: | |
vector_search_top_k: Vector search top k | |
vector_rerank_top_n: Search rerank top n | |
run_rerank: whether run reranker | |
search_method: top k search method | |
score_threshold: score threshold when selecting 'similarity_score_threshold' method | |
""" | |
global db | |
global retriever | |
global combine_docs_chain | |
global rag_chain | |
if vector_rerank_top_n > vector_search_top_k: | |
gr.Warning("Search top k must >= Rerank top n") | |
if search_method == "similarity_score_threshold": | |
search_kwargs = {"k": vector_search_top_k, "score_threshold": score_threshold} | |
else: | |
search_kwargs = {"k": vector_search_top_k} | |
retriever = db.as_retriever(search_kwargs=search_kwargs, search_type=search_method) | |
if run_rerank: | |
retriever = ContextualCompressionRetriever(base_compressor=reranker, base_retriever=retriever) | |
reranker.top_n = vector_rerank_top_n | |
rag_chain = create_retrieval_chain(retriever, combine_docs_chain) | |
return "Vector database is Ready" | |
def user(message, history): | |
""" | |
callback function for updating user messages in interface on submit button click | |
Params: | |
message: current message | |
history: conversation history | |
Returns: | |
None | |
""" | |
# Append the user's message to the conversation history | |
return "", history + [[message, ""]] | |
def bot(history, temperature, top_p, top_k, repetition_penalty, hide_full_prompt, do_rag): | |
""" | |
callback function for running chatbot on submit button click | |
Params: | |
history: conversation history | |
temperature: parameter for control the level of creativity in AI-generated text. | |
By adjusting the `temperature`, you can influence the AI model's probability distribution, making the text more focused or diverse. | |
top_p: parameter for control the range of tokens considered by the AI model based on their cumulative probability. | |
top_k: parameter for control the range of tokens considered by the AI model based on their cumulative probability, selecting number of tokens with highest probability. | |
repetition_penalty: parameter for penalizing tokens based on how frequently they occur in the text. | |
hide_full_prompt: whether to show searching results in promopt. | |
do_rag: whether do RAG when generating texts. | |
""" | |
streamer = TextIteratorStreamer( | |
llm.pipeline.tokenizer, | |
timeout=60.0, | |
skip_prompt=hide_full_prompt, | |
skip_special_tokens=True, | |
) | |
llm.pipeline._forward_params = dict( | |
max_new_tokens=512, | |
temperature=temperature, | |
do_sample=temperature > 0.0, | |
top_p=top_p, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty, | |
streamer=streamer, | |
) | |
if stop_tokens is not None: | |
llm.pipeline._forward_params["stopping_criteria"] = StoppingCriteriaList(stop_tokens) | |
if do_rag: | |
t1 = Thread(target=rag_chain.invoke, args=({"input": history[-1][0]},)) | |
else: | |
input_text = rag_prompt_template.format(input=history[-1][0], context="") | |
t1 = Thread(target=llm.invoke, args=(input_text,)) | |
t1.start() | |
# Initialize an empty string to store the generated text | |
partial_text = "" | |
for new_text in streamer: | |
partial_text = text_processor(partial_text, new_text) | |
history[-1][1] = partial_text | |
yield history | |
def request_cancel(): | |
llm.pipeline.model.request.cancel() | |
def clear_files(): | |
return "Vector Store is Not ready" | |
# initialize the vector store with example document | |
create_vectordb( | |
text_example_path, #changed | |
"RecursiveCharacter", | |
chunk_size=400, | |
chunk_overlap=50, | |
vector_search_top_k=10, | |
vector_rerank_top_n=2, | |
run_rerank=True, | |
search_method="similarity_score_threshold", | |
score_threshold=0.5, | |
) | |
with gr.Blocks( | |
theme=gr.themes.Soft(), | |
css=".disclaimer {font-variant-caps: all-small-caps;}", | |
) as demo: | |
gr.Markdown("""<h1><center>QA over Document</center></h1>""") | |
gr.Markdown(f"""<center>Powered by OpenVINO and {llm_model_id} </center>""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
docs = gr.File( | |
label="Step 1: Load text files", | |
value=text_example_path, #changed | |
file_count="multiple", | |
file_types=[ | |
".csv", | |
".doc", | |
".docx", | |
".enex", | |
".epub", | |
".html", | |
".md", | |
".odt", | |
".pdf", | |
".ppt", | |
".pptx", | |
".txt", | |
], | |
) | |
load_docs = gr.Button("Step 2: Build Vector Store", variant="primary") | |
db_argument = gr.Accordion("Vector Store Configuration", open=False) | |
with db_argument: | |
spliter = gr.Dropdown( | |
["Character", "RecursiveCharacter", "Markdown", "Chinese"], | |
value="RecursiveCharacter", | |
label="Text Spliter", | |
info="Method used to splite the documents", | |
multiselect=False, | |
) | |
chunk_size = gr.Slider( | |
label="Chunk size", | |
value=400, | |
minimum=50, | |
maximum=2000, | |
step=50, | |
interactive=True, | |
info="Size of sentence chunk", | |
) | |
chunk_overlap = gr.Slider( | |
label="Chunk overlap", | |
value=50, | |
minimum=0, | |
maximum=400, | |
step=10, | |
interactive=True, | |
info=("Overlap between 2 chunks"), | |
) | |
langchain_status = gr.Textbox( | |
label="Vector Store Status", | |
value="Vector Store is Ready", | |
interactive=False, | |
) | |
do_rag = gr.Checkbox( | |
value=True, | |
label="RAG is ON", | |
interactive=True, | |
info="Whether to do RAG for generation", | |
) | |
with gr.Accordion("Generation Configuration", open=False): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
temperature = gr.Slider( | |
label="Temperature", | |
value=0.1, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
) | |
with gr.Column(): | |
with gr.Row(): | |
top_p = gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=1.0, | |
minimum=0.0, | |
maximum=1, | |
step=0.01, | |
interactive=True, | |
info=( | |
"Sample from the smallest possible set of tokens whose cumulative probability " | |
"exceeds top_p. Set to 1 to disable and sample from all tokens." | |
), | |
) | |
with gr.Column(): | |
with gr.Row(): | |
top_k = gr.Slider( | |
label="Top-k", | |
value=50, | |
minimum=0.0, | |
maximum=200, | |
step=1, | |
interactive=True, | |
info="Sample from a shortlist of top-k tokens — 0 to disable and sample from all tokens.", | |
) | |
with gr.Column(): | |
with gr.Row(): | |
repetition_penalty = gr.Slider( | |
label="Repetition Penalty", | |
value=1.1, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.1, | |
interactive=True, | |
info="Penalize repetition — 1.0 to disable.", | |
) | |
with gr.Column(scale=4): | |
chatbot = gr.Chatbot( | |
height=800, | |
label="Step 3: Input Query", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
msg = gr.Textbox( | |
label="QA Message Box", | |
placeholder="Chat Message Box", | |
show_label=False, | |
container=False, | |
) | |
with gr.Column(): | |
with gr.Row(): | |
submit = gr.Button("Submit", variant="primary") | |
stop = gr.Button("Stop") | |
clear = gr.Button("Clear") | |
gr.Examples(examples, inputs=msg, label="Click on any example and press the 'Submit' button") | |
retriever_argument = gr.Accordion("Retriever Configuration", open=True) | |
with retriever_argument: | |
with gr.Row(): | |
with gr.Row(): | |
do_rerank = gr.Checkbox( | |
value=True, | |
label="Rerank searching result", | |
interactive=True, | |
) | |
hide_context = gr.Checkbox( | |
value=True, | |
label="Hide searching result in prompt", | |
interactive=True, | |
) | |
with gr.Row(): | |
search_method = gr.Dropdown( | |
["similarity_score_threshold", "similarity", "mmr"], | |
value="similarity_score_threshold", | |
label="Searching Method", | |
info="Method used to search vector store", | |
multiselect=False, | |
interactive=True, | |
) | |
with gr.Row(): | |
score_threshold = gr.Slider( | |
0.01, | |
0.99, | |
value=0.5, | |
step=0.01, | |
label="Similarity Threshold", | |
info="Only working for 'similarity score threshold' method", | |
interactive=True, | |
) | |
with gr.Row(): | |
vector_rerank_top_n = gr.Slider( | |
1, | |
10, | |
value=2, | |
step=1, | |
label="Rerank top n", | |
info="Number of rerank results", | |
interactive=True, | |
) | |
with gr.Row(): | |
vector_search_top_k = gr.Slider( | |
1, | |
50, | |
value=10, | |
step=1, | |
label="Search top k", | |
info="Search top k must >= Rerank top n", | |
interactive=True, | |
) | |
docs.clear(clear_files, outputs=[langchain_status], queue=False) | |
load_docs.click( | |
create_vectordb, | |
inputs=[docs, spliter, chunk_size, chunk_overlap, vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold], | |
outputs=[langchain_status], | |
queue=False, | |
) | |
submit_event = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, | |
[chatbot, temperature, top_p, top_k, repetition_penalty, hide_context, do_rag], | |
chatbot, | |
queue=True, | |
) | |
submit_click_event = submit.click(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, | |
[chatbot, temperature, top_p, top_k, repetition_penalty, hide_context, do_rag], | |
chatbot, | |
queue=True, | |
) | |
stop.click( | |
fn=request_cancel, | |
inputs=None, | |
outputs=None, | |
cancels=[submit_event, submit_click_event], | |
queue=False, | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
vector_search_top_k.release( | |
update_retriever, | |
[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold], | |
outputs=[langchain_status], | |
) | |
vector_rerank_top_n.release( | |
update_retriever, | |
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold], | |
outputs=[langchain_status], | |
) | |
do_rerank.change( | |
update_retriever, | |
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold], | |
outputs=[langchain_status], | |
) | |
search_method.change( | |
update_retriever, | |
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold], | |
outputs=[langchain_status], | |
) | |
score_threshold.change( | |
update_retriever, | |
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold], | |
outputs=[langchain_status], | |
) | |
demo.queue() | |
# if you are launching remotely, specify server_name and server_port | |
# demo.launch(server_port=8082) | |
# if you have any issue to launch on your platform, you can pass share=True to launch method: | |
demo.launch(share=True) | |
# it creates a publicly shareable link for the interface. Read more in the docs: https://gradio.app/docs/ | |
# demo.launch() | |