Upload folder using huggingface_hub
Browse files- ChatWorld/ChatWorld.py +3 -2
- ChatWorld/models.py +18 -4
ChatWorld/ChatWorld.py
CHANGED
@@ -66,8 +66,9 @@ class ChatWorld:
|
|
66 |
self.model_role_nickname = role_nick_name
|
67 |
|
68 |
def getSystemPrompt(self, role_name, role_nick_name):
|
69 |
-
assert self.model_role_name
|
70 |
-
|
|
|
71 |
|
72 |
def chat(self, user_role_name: str, text: str, user_role_nick_name: str = None, use_local_model=False):
|
73 |
message = [self.getSystemPrompt(
|
|
|
66 |
self.model_role_nickname = role_nick_name
|
67 |
|
68 |
def getSystemPrompt(self, role_name, role_nick_name):
|
69 |
+
assert self.model_role_name, "Please set model role name first"
|
70 |
+
|
71 |
+
return {"role": "system", "content": self.prompt.render(model_role_name=self.model_role_name, model_role_nickname=self.model_role_nickname, role_name=role_name, role_nickname=role_nick_name)}
|
72 |
|
73 |
def chat(self, user_role_name: str, text: str, user_role_nick_name: str = None, use_local_model=False):
|
74 |
message = [self.getSystemPrompt(
|
ChatWorld/models.py
CHANGED
@@ -3,9 +3,23 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
3 |
|
4 |
class qwen_model:
|
5 |
def __init__(self, model_name):
|
6 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
7 |
-
|
|
|
|
|
8 |
|
9 |
def get_response(self, message):
|
10 |
-
self.tokenizer.apply_chat_template(
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
class qwen_model:
|
5 |
def __init__(self, model_name):
|
6 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
7 |
+
model_name, trust_remote_code=True)
|
8 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
model_name, device_map="auto", trust_remote_code=True).eval()
|
10 |
|
11 |
def get_response(self, message):
|
12 |
+
message = self.tokenizer.apply_chat_template(
|
13 |
+
message, tokenize=False, add_generation_prompt=True)
|
14 |
+
model_inputs = self.tokenizer([message], return_tensors="pt")
|
15 |
+
generated_ids = self.model.generate(
|
16 |
+
model_inputs.input_ids,
|
17 |
+
max_new_tokens=512
|
18 |
+
)
|
19 |
+
generated_ids = [
|
20 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
21 |
+
]
|
22 |
+
|
23 |
+
response = self.tokenizer.batch_decode(
|
24 |
+
generated_ids, skip_special_tokens=True)[0]
|
25 |
+
return response
|