Spaces:
Sleeping
Sleeping
File size: 7,019 Bytes
b1bc271 695a0da b1bc271 7fb1b17 b1bc271 695a0da b1bc271 695a0da b1bc271 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# -*- coding: utf-8 -*-
# 財政部財政資訊中心 江信宗
import gradio as gr
import requests
import base64
import json
import os
from PIL import Image
from zhconv_rs import zhconv
from io import BytesIO
invoke_url = "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-90b-vision-instruct/chat/completions"
stream = True
def compress_image(image_path, max_size_kb=175):
max_size_bytes = max_size_kb * 1024
quality = 95
with Image.open(image_path) as img:
img.thumbnail((800, 800))
while True:
img_byte_arr = BytesIO()
img.save(img_byte_arr, format='JPEG', quality=quality)
if img_byte_arr.tell() <= max_size_bytes or quality <= 10:
return img_byte_arr.getvalue()
quality = max(quality - 10, 10)
def process_image(image_path, api_key, question):
try:
compressed_image = compress_image(image_path)
image_b64 = base64.b64encode(compressed_image).decode()
assert len(image_b64) < 180_000, \
"Image is still too large after compression. Please try a smaller image."
if not api_key:
api_key = os.getenv("YOUR_API_KEY")
prompt = f"{question} . Must reply to me in \"Traditional Chinese\"."
headers = {
"Authorization": f"Bearer {api_key}",
"Accept": "text/event-stream" if stream else "application/json"
}
payload = {
"model": 'meta/llama-3.2-90b-vision-instruct',
"messages": [
{
"role": "user",
"content": f'{prompt} <img src="data:image/jpeg;base64,{image_b64}" />'
}
],
"max_tokens": 512,
"temperature": 1.00,
"top_p": 1.00,
"stream": stream
}
response = requests.post(invoke_url, headers=headers, json=payload, stream=True)
if response.status_code == 200:
full_response = ""
for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
json_str = line[6:]
if json_str.strip() == '[DONE]':
break
try:
json_obj = json.loads(json_str)
content = json_obj['choices'][0]['delta'].get('content', '')
full_response += content
yield full_response
except json.JSONDecodeError:
print(f"Failed to parse JSON: {json_str}")
full_response = zhconv(full_response, "zh-tw")
return full_response
elif response.status_code == 402:
return "錯誤:API 帳號積分已過期。請至 NVIDIA 官網檢查您的帳號狀態。"
else:
error_message = f"錯誤 {response.status_code}: {response.text}"
print(error_message)
return f"發生錯誤。請稍後再試或聯繫管理員。錯誤代碼:{response.status_code}"
except Exception as e:
print(f"發生異常:{str(e)}")
return f"處理請求時發生錯誤:{str(e)}"
custom_css = """
.center-aligned {
text-align: center !important;
color: #ff4081;
text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
margin-bottom: -5px !important;
}
.gen-button {
border-radius: 10px !important;
background-color: #ff4081 !important;
color: white !important;
font-weight: bold !important;
transition: all 0.3s ease !important;
}
.gen-button:hover {
background-color: #f50057 !important;
transform: scale(1.05);
}
.gr-input, .gr-box, .gr-dropdown {
border-radius: 10px !important;
border: 2px solid #ff4081 !important;
}
.gr-input:focus, .gr-box:focus, .gr-dropdown:focus {
border-color: #f50057 !important;
box-shadow: 0 0 0 2px rgba(245,0,87,0.2) !important;
}
.input-background {
background-color: #B7E0FF !important;
padding: 15px !important;
border-radius: 10px !important;
}
.gr-box {
border-radius: 10px !important;
border: 2px solid #ff4081 !important;
}
.api-background {
background-color: #FFCFB3 !important;
padding: 15px !important;
border-radius: 10px !important;
}
.output-background {
background-color: #FFF4B5 !important;
padding: 15px !important;
border-radius: 10px !important;
}
.image-background {
border-radius: 10px !important;
border: 2px solid #B7E0FF !important;
}
.clear-button {
border-radius: 10px !important;
background-color: #333333 !important;
color: white !important;
font-weight: bold !important;
transition: all 0.3s ease !important;
}
.clear-button:hover {
background-color: #000000 !important;
transform: scale(1.05);
}
"""
with gr.Blocks(theme=gr.themes.Monochrome(), css=custom_css) as demo:
gr.Markdown("# 👹 Llama 3.2 90B Vision. Deployed by 江信宗", elem_classes="center-aligned")
image_input = gr.Image(type="filepath", label="上傳圖片", elem_classes="image-background")
with gr.Row():
question_input = gr.Textbox(label="請輸入您的問題", placeholder="例如:What is in this image?", scale=2, elem_classes="input-background")
api_key_input = gr.Textbox(type="password", label="請輸入您的 API Key", placeholder="API authentication key for large language models", scale=1, elem_classes="api-background")
output = gr.Textbox(label="Vision Model 回覆", elem_classes="output-background", max_lines=20)
with gr.Row():
submit_button = gr.Button("傳送", variant="primary", scale=2, elem_classes="gen-button")
clear_button = gr.Button("清除", variant="secondary", scale=1, elem_classes="clear-button")
def clear_inputs():
gr.Info("已成功清除所有內容,歡迎繼續提問......")
return None, "", ""
clear_button.click(
fn=clear_inputs,
inputs=None,
outputs=[image_input, question_input, output]
)
submit_button.click(fn=process_image, inputs=[image_input, api_key_input, question_input], outputs=output)
gr.HTML("""
<script>
document.addEventListener('click', function(e) {
if (e.target && e.target.textContent === '清除') {
var fileInput = document.querySelector('.upload-button input[type=file]');
if (fileInput) {
fileInput.value = '';
}
}
});
</script>
""")
if __name__ == "__main__":
if "SPACE_ID" in os.environ:
demo.queue().launch()
else:
demo.queue().launch(share=True, show_api=False)
|