File size: 10,442 Bytes
52f1bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
from dataclasses import dataclass

import torch
from transformers import PretrainedConfig
from transformers.utils import ModelOutput


class SuryaOCRConfig(PretrainedConfig):
    model_type = "vision-encoder-decoder"
    is_composition = True

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        encoder_config = kwargs.pop("encoder")
        decoder_config = kwargs.pop("decoder")

        self.encoder = encoder_config
        self.decoder = decoder_config
        self.is_encoder_decoder = True

        if isinstance(decoder_config, dict):
            self.decoder_start_token_id = decoder_config["bos_token_id"]
            self.pad_token_id = decoder_config["pad_token_id"]
            self.eos_token_id = decoder_config["eos_token_id"]
        else:
            self.decoder_start_token_id = decoder_config.bos_token_id
            self.pad_token_id = decoder_config.pad_token_id
            self.eos_token_id = decoder_config.eos_token_id


class DonutSwinConfig(PretrainedConfig):
    model_type = "donut-swin"

    attribute_map = {
        "num_attention_heads": "num_heads",
        "num_hidden_layers": "num_layers",
    }

    def __init__(
        self,
        image_size=(256, 896),
        patch_size=4,
        num_channels=3,
        embed_dim=128,
        depths=[2, 2, 14, 2],
        num_heads=[4, 8, 16, 32],
        num_kv_heads=[1, 2, 4, 8],
        window_size=7,
        mlp_ratio=4.0,
        qkv_bias=True,
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        drop_path_rate=0.1,
        hidden_act="gelu",
        use_absolute_embeddings=True,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        encoder_length=256,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.embed_dim = embed_dim
        self.depths = depths
        self.num_layers = len(depths)
        self.num_heads = num_heads
        self.num_kv_heads = num_kv_heads
        self.window_size = window_size
        self.mlp_ratio = mlp_ratio
        self.qkv_bias = qkv_bias
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.drop_path_rate = drop_path_rate
        self.hidden_act = hidden_act
        self.use_absolute_embeddings = use_absolute_embeddings
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
        # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
        # this indicates the channel dimension after the last stage of the model
        self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
        self.encoder_length = encoder_length


class SuryaOCRDecoderConfig(PretrainedConfig):
    model_type = "surya_ocr"

    def __init__(
        self,
        num_hidden_layers=10,
        vocab_size=65792,
        hidden_size=1024,
        intermediate_size=4 * 1024,
        num_attention_heads=16,
        lru_width=None,
        attention_window_size=16,
        conv1d_width=4,
        logits_soft_cap=30.0,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=0,
        eos_token_id=1,
        bos_token_id=1,
        hidden_activation="gelu_pytorch_tanh",
        rope_theta=10000.0,
        block_types=("attention",),
        cross_attn_layers=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9),
        self_attn_layers=(0, 1, 3, 5, 7, 9),
        global_attn_layers=(0, 1, 3, 5, 7, 9),
        attention_dropout=0.0,
        num_key_value_heads=2,
        attention_bias=False,
        w_init_variance_scale=0.01,
        init_std=0.02,
        tie_word_embeddings=False,
        aux_heads=0,  # How many n-token-ahead heads to add
        encoder_hidden_size=1024,
        causal=False,
        **kwargs,
    ):
        self.num_hidden_layers = num_hidden_layers
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_attention_heads = num_attention_heads
        self.lru_width = lru_width if lru_width is not None else hidden_size
        self.attention_window_size = attention_window_size
        self.conv1d_width = conv1d_width
        self.logits_soft_cap = logits_soft_cap
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.block_types = list(block_types)
        self.hidden_activation = hidden_activation
        self.head_dim = self.hidden_size // self.num_attention_heads
        self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads
        if self.num_key_value_heads > self.num_attention_heads:
            raise ValueError("The number of `num_key_value_heads` must be smaller than `num_attention_heads`")
        self.cross_attn_layers = cross_attn_layers
        self.self_attn_layers = self_attn_layers
        self.global_attn_layers = global_attn_layers
        self.attention_dropout = attention_dropout
        self.attention_bias = attention_bias
        self.w_init_variance_scale = w_init_variance_scale
        self.final_w_init_variance_scale = 2.0 / self.num_hidden_layers
        self.init_std = init_std
        self.tie_word_embeddings = tie_word_embeddings
        self.aux_heads = aux_heads
        self.encoder_hidden_size = encoder_hidden_size
        self.causal = causal

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            **kwargs,
        )

    @property
    def layers_block_type(self):
        return (self.block_types * 100)[: self.num_hidden_layers]


class SuryaOCRTextEncoderConfig(PretrainedConfig):
    model_type = "surya_ocr"

    def __init__(
        self,
        num_hidden_layers=10,
        vocab_size=65792,
        hidden_size=1024,
        intermediate_size=4 * 1024,
        num_attention_heads=16,
        lru_width=None,
        attention_window_size=16,
        conv1d_width=4,
        logits_soft_cap=30.0,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=0,
        eos_token_id=1,
        bos_token_id=1,
        hidden_activation="gelu_pytorch_tanh",
        rope_theta=10000.0,
        block_types=("attention",),
        cross_attn_layers=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9),
        self_attn_layers=(0, 1, 3, 5, 7, 9),
        global_attn_layers=(0, 1, 3, 5, 7, 9),
        attention_dropout=0.0,
        num_key_value_heads=2,
        attention_bias=False,
        w_init_variance_scale=0.01,
        init_std=0.02,
        tie_word_embeddings=False,
        aux_heads=0,  # How many n-token-ahead heads to add
        encoder_hidden_size=1024,
        iteration_count=1,
        causal=False,
        query_token_count=128,
        **kwargs,
    ):
        self.num_hidden_layers = num_hidden_layers
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_attention_heads = num_attention_heads
        self.lru_width = lru_width if lru_width is not None else hidden_size
        self.attention_window_size = attention_window_size
        self.conv1d_width = conv1d_width
        self.logits_soft_cap = logits_soft_cap
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.block_types = list(block_types)
        self.hidden_activation = hidden_activation
        self.head_dim = self.hidden_size // self.num_attention_heads
        self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads
        if self.num_key_value_heads > self.num_attention_heads:
            raise ValueError("The number of `num_key_value_heads` must be smaller than `num_attention_heads`")
        self.cross_attn_layers = cross_attn_layers
        self.self_attn_layers = self_attn_layers
        self.global_attn_layers = global_attn_layers
        self.attention_dropout = attention_dropout
        self.attention_bias = attention_bias
        self.w_init_variance_scale = w_init_variance_scale
        self.final_w_init_variance_scale = 2.0 / self.num_hidden_layers
        self.init_std = init_std
        self.tie_word_embeddings = tie_word_embeddings
        self.aux_heads = aux_heads
        self.encoder_hidden_size = encoder_hidden_size
        self.iteration_count = iteration_count
        self.causal = causal
        self.query_token_count = query_token_count

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            **kwargs,
        )

    @property
    def layers_block_type(self):
        return (self.block_types * 100)[: self.num_hidden_layers]

TOTAL_TOKENS = 65536
TOKEN_OFFSET = 3 # Pad, eos, bos
SPECIAL_TOKENS = 253
TOTAL_VOCAB_SIZE = TOTAL_TOKENS + TOKEN_OFFSET + SPECIAL_TOKENS
LANGUAGE_MAP = {
    'af': 0,
    'am': 1,
    'ar': 2,
    'as': 3,
    'az': 4,
    'be': 5,
    'bg': 6,
    'bn': 7,
    'br': 8,
    'bs': 9,
    'ca': 10,
    'cs': 11,
    'cy': 12,
    'da': 13,
    'de': 14,
    'el': 15,
    'en': 16,
    'eo': 17,
    'es': 18,
    'et': 19,
    'eu': 20,
    'fa': 21,
    'fi': 22,
    'fr': 23,
    'fy': 24,
    'ga': 25,
    'gd': 26,
    'gl': 27,
    'gu': 28,
    'ha': 29,
    'he': 30,
    'hi': 31,
    'hr': 32,
    'hu': 33,
    'hy': 34,
    'id': 35,
    'is': 36,
    'it': 37,
    'ja': 38,
    'jv': 39,
    'ka': 40,
    'kk': 41,
    'km': 42,
    'kn': 43,
    'ko': 44,
    'ku': 45,
    'ky': 46,
    'la': 47,
    'lo': 48,
    'lt': 49,
    'lv': 50,
    'mg': 51,
    'mk': 52,
    'ml': 53,
    'mn': 54,
    'mr': 55,
    'ms': 56,
    'my': 57,
    'ne': 58,
    'nl': 59,
    'no': 60,
    'om': 61,
    'or': 62,
    'pa': 63,
    'pl': 64,
    'ps': 65,
    'pt': 66,
    'ro': 67,
    'ru': 68,
    'sa': 69,
    'sd': 70,
    'si': 71,
    'sk': 72,
    'sl': 73,
    'so': 74,
    'sq': 75,
    'sr': 76,
    'su': 77,
    'sv': 78,
    'sw': 79,
    'ta': 80,
    'te': 81,
    'th': 82,
    'tl': 83,
    'tr': 84,
    'ug': 85,
    'uk': 86,
    'ur': 87,
    'uz': 88,
    'vi': 89,
    'xh': 90,
    'yi': 91,
    'zh': 92,
    "_math": 93
}