File size: 38,090 Bytes
52f1bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
""" EfficientViT (by MIT Song Han's Lab)

Paper: `Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition`
    - https://arxiv.org/abs/2205.14756

Code adapted from timm, https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/efficientvit_mit.py
Original code (that timm adapted from) at https://github.com/mit-han-lab/efficientvit
"""

import collections.abc
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn

from transformers.activations import ACT2FN
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
from transformers.utils import ModelOutput
from surya.model.recognition.config import DonutSwinConfig

_EXPECTED_OUTPUT_SHAPE = [1, 49, 1024]


@dataclass
# Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->DonutSwin
class DonutSwinEncoderOutput(ModelOutput):

    last_hidden_state: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None


@dataclass
class DonutSwinModelOutput(ModelOutput):
    last_hidden_state: torch.FloatTensor = None


# Copied from transformers.models.swin.modeling_swin.window_partition
def window_partition(input_feature, window_size):
    """
    Partitions the given input into windows.
    """
    batch_size, height, width, num_channels = input_feature.shape
    input_feature = input_feature.view(
        batch_size, height // window_size, window_size, width // window_size, window_size, num_channels
    )
    windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels)
    return windows


# Copied from transformers.models.swin.modeling_swin.window_reverse
def window_reverse(windows, window_size, height, width):
    """
    Merges windows to produce higher resolution features.
    """
    num_channels = windows.shape[-1]
    windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels)
    windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels)
    return windows


# Copied from transformers.models.swin.modeling_swin.SwinEmbeddings with Swin->DonutSwin
class DonutSwinEmbeddings(nn.Module):
    """
    Construct the patch and position embeddings. Optionally, also the mask token.
    """

    def __init__(self, config, use_mask_token=False):
        super().__init__()

        self.patch_embeddings = DonutSwinPatchEmbeddings(config)
        num_patches = self.patch_embeddings.num_patches
        self.patch_grid = self.patch_embeddings.grid_size
        self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None

        if config.use_absolute_embeddings:
            self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim))
        else:
            self.position_embeddings = None

        self.norm = nn.LayerNorm(config.embed_dim)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
        """
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
        resolution images.

        Source:
        https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
        """

        num_patches = embeddings.shape[1] - 1
        num_positions = self.position_embeddings.shape[1] - 1
        if num_patches == num_positions and height == width:
            return self.position_embeddings
        class_pos_embed = self.position_embeddings[:, 0]
        patch_pos_embed = self.position_embeddings[:, 1:]
        dim = embeddings.shape[-1]
        h0 = height // self.config.patch_size
        w0 = width // self.config.patch_size
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        h0, w0 = h0 + 0.1, w0 + 0.1
        patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
        patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed,
            scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
            mode="bicubic",
            align_corners=False,
        )
        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)

    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor],
        bool_masked_pos: Optional[torch.BoolTensor] = None,
        interpolate_pos_encoding: bool = False,
    ) -> Tuple[torch.Tensor]:
        _, num_channels, height, width = pixel_values.shape
        embeddings, output_dimensions = self.patch_embeddings(pixel_values)
        embeddings = self.norm(embeddings)
        batch_size, seq_len, _ = embeddings.size()

        if bool_masked_pos is not None:
            mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
            # replace the masked visual tokens by mask_tokens
            mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
            embeddings = embeddings * (1.0 - mask) + mask_tokens * mask

        if self.position_embeddings is not None:
            if interpolate_pos_encoding:
                embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
            else:
                embeddings = embeddings + self.position_embeddings[:, :seq_len]

        embeddings = self.dropout(embeddings)

        return embeddings, output_dimensions


# Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings with Swin->DonutSwin
class DonutSwinPatchEmbeddings(nn.Module):
    """
    This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
    `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
    Transformer.
    """

    def __init__(self, config):
        super().__init__()
        image_size, patch_size = config.image_size, config.patch_size
        num_channels, hidden_size = config.num_channels, config.embed_dim
        image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
        patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.num_patches = num_patches
        self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])

        self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)

    def maybe_pad(self, pixel_values, height, width):
        if width % self.patch_size[1] != 0:
            pad_values = (0, self.patch_size[1] - width % self.patch_size[1])
            pixel_values = nn.functional.pad(pixel_values, pad_values)
        if height % self.patch_size[0] != 0:
            pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0])
            pixel_values = nn.functional.pad(pixel_values, pad_values)
        return pixel_values

    def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]:
        _, num_channels, height, width = pixel_values.shape
        # pad the input to be divisible by self.patch_size, if needed
        pixel_values = self.maybe_pad(pixel_values, height, width)
        embeddings = self.projection(pixel_values)
        _, _, height, width = embeddings.shape
        output_dimensions = (height, width)
        embeddings = embeddings.flatten(2).transpose(1, 2)

        return embeddings, output_dimensions


# Copied from transformers.models.swin.modeling_swin.SwinPatchMerging
class DonutSwinPatchMerging(nn.Module):
    """
    Patch Merging Layer.

    Args:
        input_resolution (`Tuple[int]`):
            Resolution of input feature.
        dim (`int`):
            Number of input channels.
        norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
            Normalization layer class.
    """

    def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def maybe_pad(self, input_feature, height, width):
        should_pad = (height % 2 == 1) or (width % 2 == 1)
        if should_pad:
            pad_values = (0, 0, 0, width % 2, 0, height % 2)
            input_feature = nn.functional.pad(input_feature, pad_values)

        return input_feature

    def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor:
        height, width = input_dimensions
        # `dim` is height * width
        batch_size, dim, num_channels = input_feature.shape

        input_feature = input_feature.view(batch_size, height, width, num_channels)
        # pad input to be disible by width and height, if needed
        input_feature = self.maybe_pad(input_feature, height, width)
        # [batch_size, height/2, width/2, num_channels]
        input_feature_0 = input_feature[:, 0::2, 0::2, :]
        # [batch_size, height/2, width/2, num_channels]
        input_feature_1 = input_feature[:, 1::2, 0::2, :]
        # [batch_size, height/2, width/2, num_channels]
        input_feature_2 = input_feature[:, 0::2, 1::2, :]
        # [batch_size, height/2, width/2, num_channels]
        input_feature_3 = input_feature[:, 1::2, 1::2, :]
        # batch_size height/2 width/2 4*num_channels
        input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1)
        input_feature = input_feature.view(batch_size, -1, 4 * num_channels)  # batch_size height/2*width/2 4*C

        input_feature = self.norm(input_feature)
        input_feature = self.reduction(input_feature)

        return input_feature


# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
    however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
    layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
    argument.
    """
    if drop_prob == 0.0 or not training:
        return input
    keep_prob = 1 - drop_prob
    shape = (input.shape[0],) + (1,) * (input.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
    random_tensor.floor_()  # binarize
    output = input.div(keep_prob) * random_tensor
    return output


# Copied from transformers.models.swin.modeling_swin.SwinDropPath
class DonutSwinDropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob: Optional[float] = None) -> None:
        super().__init__()
        self.drop_prob = drop_prob

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return drop_path(hidden_states, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


# Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->DonutSwin
class DonutSwinSelfAttention(nn.Module):
    def __init__(self, config, dim, num_heads, num_kv_heads, window_size):
        super().__init__()
        if dim % num_heads != 0:
            raise ValueError(
                f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
            )

        self.num_attention_heads = num_heads
        self.num_kv_heads = num_kv_heads
        self.kv_repeats = self.num_attention_heads // self.num_kv_heads
        self.attention_head_size = int(dim / num_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
        self.kv_head_size = self.num_kv_heads * self.attention_head_size
        self.window_size = (
            window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size)
        )

        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads)
        )

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
        coords_flatten = torch.flatten(coords, 1)
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()
        relative_coords[:, :, 0] += self.window_size[0] - 1
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)
        self.register_buffer("relative_position_index", relative_position_index)

        self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
        self.key = nn.Linear(self.all_head_size, self.kv_head_size, bias=config.qkv_bias)
        self.value = nn.Linear(self.all_head_size, self.kv_head_size, bias=config.qkv_bias)

        self.dropout_p = config.attention_probs_dropout_prob

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def transpose_kv_for_scores(self, x, repeats):
        new_x_shape = x.size()[:-1] + (self.num_kv_heads, self.attention_head_size)
        x = x.view(new_x_shape)
        x = x.repeat(1, 1, repeats, 1) # repeat the values for each key-value head to match query dim
        return x.permute(0, 2, 1, 3).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:
        batch_size, dim, num_channels = hidden_states.shape
        mixed_query_layer = self.query(hidden_states)

        # Final is (batch_size, num_attention_heads, seq_len, attention_head_size)
        key_layer = self.transpose_kv_for_scores(self.key(hidden_states), self.kv_repeats)
        value_layer = self.transpose_kv_for_scores(self.value(hidden_states), self.kv_repeats)
        query_layer = self.transpose_for_scores(mixed_query_layer)

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)]
        relative_position_bias = relative_position_bias.view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
        )
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous().unsqueeze(0)
        if attention_mask is None:
            attention_mask = relative_position_bias
        else:
            mask_shape = attention_mask.shape[0]
            repeat_count = (batch_size // mask_shape)
            attention_mask = attention_mask.repeat(repeat_count, 1, 1).unsqueeze(1)
            attention_mask = attention_mask + relative_position_bias

        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_layer.contiguous(),
            key_layer.contiguous(),
            value_layer.contiguous(),
            attn_mask=attention_mask,
            dropout_p=self.dropout_p if self.training else 0.0,
            scale=self.attention_head_size**-0.5,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(batch_size, dim, num_channels)

        outputs = (attn_output,)
        return outputs

# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput
class DonutSwinSelfOutput(nn.Module):
    def __init__(self, config, dim):
        super().__init__()
        self.dense = nn.Linear(dim, dim)
        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)

        return hidden_states


# Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->DonutSwin
class DonutSwinAttention(nn.Module):
    def __init__(self, config, dim, num_heads, num_kv_heads, window_size):
        super().__init__()
        self.self = DonutSwinSelfAttention(config, dim, num_heads, num_kv_heads, window_size)
        self.output = DonutSwinSelfOutput(config, dim)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:
        self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions)
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


# Copied from transformers.models.swin.modeling_swin.SwinIntermediate
class DonutSwinIntermediate(nn.Module):
    def __init__(self, config, dim):
        super().__init__()
        self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


# Copied from transformers.models.swin.modeling_swin.SwinOutput
class DonutSwinOutput(nn.Module):
    def __init__(self, config, dim):
        super().__init__()
        self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


# Copied from transformers.models.swin.modeling_swin.SwinLayer with Swin->DonutSwin
class DonutSwinLayer(nn.Module):
    def __init__(self, config, dim, input_resolution, num_heads, num_kv_heads, shift_size=0):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.shift_size = shift_size
        self.window_size = config.window_size
        self.input_resolution = input_resolution
        self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
        self.attention = DonutSwinAttention(config, dim, num_heads, num_kv_heads, window_size=self.window_size)
        self.drop_path = DonutSwinDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
        self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
        self.intermediate = DonutSwinIntermediate(config, dim)
        self.output = DonutSwinOutput(config, dim)

    def set_shift_and_window_size(self, input_resolution):
        if min(input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
            self.shift_size = int(0)
            self.window_size = (
                torch.min(torch.tensor(input_resolution)) if torch.jit.is_tracing() else min(input_resolution)
            )

    def get_attn_mask(self, height, width, dtype, device):
        if self.shift_size > 0:
            # calculate attention mask for SW-MSA
            img_mask = torch.zeros((1, height, width, 1), dtype=dtype, device=device)
            height_slices = (
                slice(0, -self.window_size),
                slice(-self.window_size, -self.shift_size),
                slice(-self.shift_size, None),
            )
            width_slices = (
                slice(0, -self.window_size),
                slice(-self.window_size, -self.shift_size),
                slice(-self.shift_size, None),
            )
            count = 0
            for height_slice in height_slices:
                for width_slice in width_slices:
                    img_mask[:, height_slice, width_slice, :] = count
                    count += 1

            mask_windows = window_partition(img_mask, self.window_size)
            mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
            attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
        else:
            attn_mask = None
        return attn_mask

    def maybe_pad(self, hidden_states, height, width):
        pad_right = (self.window_size - width % self.window_size) % self.window_size
        pad_bottom = (self.window_size - height % self.window_size) % self.window_size
        pad_values = (0, 0, 0, pad_right, 0, pad_bottom)
        hidden_states = nn.functional.pad(hidden_states, pad_values)
        return hidden_states, pad_values

    def forward(
        self,
        hidden_states: torch.Tensor,
        input_dimensions: Tuple[int, int],
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
        always_partition: Optional[bool] = False,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if not always_partition:
            self.set_shift_and_window_size(input_dimensions)
        else:
            pass
        height, width = input_dimensions
        batch_size, _, channels = hidden_states.size()
        shortcut = hidden_states

        hidden_states = self.layernorm_before(hidden_states)

        hidden_states = hidden_states.view(batch_size, height, width, channels)

        # pad hidden_states to multiples of window size
        hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)

        _, height_pad, width_pad, _ = hidden_states.shape
        # cyclic shift
        if self.shift_size > 0:
            shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_hidden_states = hidden_states

        # partition windows
        hidden_states_windows = window_partition(shifted_hidden_states, self.window_size)
        hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels)
        attn_mask = self.get_attn_mask(
            height_pad, width_pad, dtype=hidden_states.dtype, device=hidden_states_windows.device
        )

        attention_outputs = self.attention(
            hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions
        )

        attention_output = attention_outputs[0]

        attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels)
        shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad)

        # reverse cyclic shift
        if self.shift_size > 0:
            attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            attention_windows = shifted_windows

        was_padded = pad_values[3] > 0 or pad_values[5] > 0
        if was_padded:
            attention_windows = attention_windows[:, :height, :width, :].contiguous()

        attention_windows = attention_windows.view(batch_size, height * width, channels)

        hidden_states = shortcut + self.drop_path(attention_windows)

        layer_output = self.layernorm_after(hidden_states)
        layer_output = self.intermediate(layer_output)
        layer_output = hidden_states + self.output(layer_output)

        layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
        return layer_outputs


# Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->DonutSwin
class DonutSwinStage(nn.Module):
    def __init__(self, config, dim, input_resolution, depth, num_heads, num_kv_heads, drop_path, downsample):
        super().__init__()
        self.config = config
        self.dim = dim
        self.blocks = nn.ModuleList(
            [
                DonutSwinLayer(
                    config=config,
                    dim=dim,
                    input_resolution=input_resolution,
                    num_heads=num_heads,
                    num_kv_heads=num_kv_heads,
                    shift_size=0 if (i % 2 == 0) else config.window_size // 2,
                )
                for i in range(depth)
            ]
        )

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm)
        else:
            self.downsample = None

        self.pointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        input_dimensions: Tuple[int, int],
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
        always_partition: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:
        height, width = input_dimensions
        for i, layer_module in enumerate(self.blocks):
            layer_head_mask = head_mask[i] if head_mask is not None else None

            layer_outputs = layer_module(
                hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
            )

            hidden_states = layer_outputs[0]

        hidden_states_before_downsampling = hidden_states
        if self.downsample is not None:
            height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
            output_dimensions = (height, width, height_downsampled, width_downsampled)
            hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions)
        else:
            output_dimensions = (height, width, height, width)

        stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions)

        if output_attentions:
            stage_outputs += layer_outputs[1:]
        return stage_outputs


# Copied from transformers.models.swin.modeling_swin.SwinEncoder with Swin->DonutSwin
class DonutSwinEncoder(nn.Module):
    def __init__(self, config, grid_size):
        super().__init__()
        self.num_layers = len(config.depths)
        self.config = config
        dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
        self.layers = nn.ModuleList(
            [
                DonutSwinStage(
                    config=config,
                    dim=int(config.embed_dim * 2**i_layer),
                    input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)),
                    depth=config.depths[i_layer],
                    num_heads=config.num_heads[i_layer],
                    num_kv_heads=config.num_kv_heads[i_layer],
                    drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
                    downsample=DonutSwinPatchMerging if (i_layer < self.num_layers - 1) else None,
                )
                for i_layer in range(self.num_layers)
            ]
        )

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        input_dimensions: Tuple[int, int],
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
        output_hidden_states: Optional[bool] = False,
        output_hidden_states_before_downsampling: Optional[bool] = False,
        always_partition: Optional[bool] = False,
        return_dict: Optional[bool] = True,
    ) -> Union[Tuple, DonutSwinEncoderOutput]:
        all_hidden_states = () if output_hidden_states else None
        all_reshaped_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        if output_hidden_states:
            batch_size, _, hidden_size = hidden_states.shape
            # rearrange b (h w) c -> b c h w
            reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
            reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
            all_hidden_states += (hidden_states,)
            all_reshaped_hidden_states += (reshaped_hidden_state,)

        for i, layer_module in enumerate(self.layers):
            layer_head_mask = head_mask[i] if head_mask is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    hidden_states,
                    input_dimensions,
                    layer_head_mask,
                    output_attentions,
                    always_partition,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
                )

            hidden_states = layer_outputs[0]
            hidden_states_before_downsampling = layer_outputs[1]
            output_dimensions = layer_outputs[2]

            input_dimensions = (output_dimensions[-2], output_dimensions[-1])

            if output_hidden_states and output_hidden_states_before_downsampling:
                batch_size, _, hidden_size = hidden_states_before_downsampling.shape
                # rearrange b (h w) c -> b c h w
                # here we use the original (not downsampled) height and width
                reshaped_hidden_state = hidden_states_before_downsampling.view(
                    batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size
                )
                reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
                all_hidden_states += (hidden_states_before_downsampling,)
                all_reshaped_hidden_states += (reshaped_hidden_state,)
            elif output_hidden_states and not output_hidden_states_before_downsampling:
                batch_size, _, hidden_size = hidden_states.shape
                # rearrange b (h w) c -> b c h w
                reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
                reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
                all_hidden_states += (hidden_states,)
                all_reshaped_hidden_states += (reshaped_hidden_state,)

            if output_attentions:
                all_self_attentions += layer_outputs[3:]

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)

        return DonutSwinEncoderOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            reshaped_hidden_states=all_reshaped_hidden_states,
        )


# Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->DonutSwin
class DonutSwinPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = DonutSwinConfig
    base_model_prefix = "swin"
    main_input_name = "pixel_values"
    supports_gradient_checkpointing = True
    _no_split_modules = ["DonutSwinStage"]

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


class DonutSwinModel(DonutSwinPreTrainedModel):
    def __init__(self, config, add_pooling_layer=True, use_mask_token=False):
        super().__init__(config)
        self.config = config
        self.num_layers = len(config.depths)
        self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1))

        self.embeddings = DonutSwinEmbeddings(config, use_mask_token=use_mask_token)
        self.encoder = DonutSwinEncoder(config, self.embeddings.patch_grid)

        self.position_embeddings = nn.Parameter(torch.zeros(1, config.encoder_length, config.hidden_size))

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.patch_embeddings

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        bool_masked_pos: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        interpolate_pos_encoding: bool = False,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, DonutSwinModelOutput]:
        r"""
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, len(self.config.depths))

        embedding_output, input_dimensions = self.embeddings(
            pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
        )

        encoder_outputs = self.encoder(
            embedding_output,
            input_dimensions,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_state = encoder_outputs[0]
        last_hidden_state += self.position_embeddings[:, :last_hidden_state.size(1), :]

        return DonutSwinModelOutput(
            last_hidden_state=last_hidden_state,
        )