File size: 5,916 Bytes
52f1bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from typing import Optional, Union, Tuple

import torch
from transformers import PreTrainedModel, VisionEncoderDecoderConfig, PretrainedConfig
from transformers.modeling_outputs import Seq2SeqLMOutput, BaseModelOutput
from transformers.models.vision_encoder_decoder.modeling_vision_encoder_decoder import shift_tokens_right
from surya.model.recognition.encoder import DonutSwinModel
from surya.model.recognition.decoder import SuryaOCRDecoder, SuryaOCRTextEncoder


class OCREncoderDecoderModel(PreTrainedModel):
    config_class = VisionEncoderDecoderConfig
    base_model_prefix = "vision_encoder_decoder"
    main_input_name = "pixel_values"
    supports_gradient_checkpointing = True
    _supports_param_buffer_assignment = False

    def __init__(
        self,
        config: Optional[PretrainedConfig] = None,
        encoder: Optional[PreTrainedModel] = None,
        decoder: Optional[PreTrainedModel] = None,
        text_encoder: Optional[PreTrainedModel] = None,
    ):
        # initialize with config
        # make sure input & output embeddings is not tied
        config.tie_word_embeddings = False
        config.decoder.tie_word_embeddings = False
        super().__init__(config)

        if encoder is None:
            encoder = DonutSwinModel(config.encoder)

        if decoder is None:
            decoder = SuryaOCRDecoder(config.decoder, attn_implementation=config._attn_implementation)

        if text_encoder is None:
            text_encoder = SuryaOCRTextEncoder(config.text_encoder, attn_implementation=config._attn_implementation)

        self.encoder = encoder
        self.decoder = decoder
        self.text_encoder = text_encoder

        # make sure that the individual model's config refers to the shared config
        # so that the updates to the config will be synced
        self.encoder.config = self.config.encoder
        self.decoder.config = self.config.decoder
        self.text_encoder.config = self.config.text_encoder

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    def get_output_embeddings(self):
        return self.decoder.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        return self.decoder.set_output_embeddings(new_embeddings)

    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_cache_position: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
        use_cache: Optional[bool] = None,
        **kwargs,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:

        kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }

        if encoder_outputs is None:
            if pixel_values is None:
                raise ValueError("You have to specify pixel_values")

            encoder_outputs = self.encoder(
                pixel_values=pixel_values,
                **kwargs_encoder,
            )
        elif isinstance(encoder_outputs, tuple):
            encoder_outputs = BaseModelOutput(*encoder_outputs)

        encoder_hidden_states = encoder_outputs[0]

        # optionally project encoder_hidden_states
        if (
            self.encoder.config.hidden_size != self.decoder.config.hidden_size
            and self.decoder.config.cross_attention_hidden_size is None
        ):
            encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)

        # else:
        encoder_attention_mask = None

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            cache_position=decoder_cache_position,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=use_cache,
            **kwargs_decoder,
        )

        return Seq2SeqLMOutput(
            logits=decoder_outputs.logits,
            decoder_hidden_states=decoder_outputs.hidden_states,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state
        )

    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
    ):
        decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
        decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None
        input_dict = {
            "attention_mask": attention_mask,
            "decoder_attention_mask": decoder_attention_mask,
            "decoder_input_ids": decoder_inputs["input_ids"],
            "encoder_outputs": encoder_outputs,
            "past_key_values": decoder_inputs["past_key_values"],
            "use_cache": use_cache,
        }
        return input_dict

    def resize_token_embeddings(self, *args, **kwargs):
        raise NotImplementedError(
            "Resizing the embedding layers via the VisionEncoderDecoderModel directly is not supported.Please use the"
            " respective methods of the wrapped decoder object (model.decoder.resize_token_embeddings(...))"
        )

    def _reorder_cache(self, past_key_values, beam_idx):
        # apply decoder cache reordering here
        return self.decoder._reorder_cache(past_key_values, beam_idx)