File size: 9,630 Bytes
52f1bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from transformers import PretrainedConfig
from surya.settings import settings

BOX_DIM = 1024
SPECIAL_TOKENS = 7
MAX_ROWS = 384


class SuryaTableRecConfig(PretrainedConfig):
    model_type = "vision-encoder-decoder"
    is_composition = True

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        encoder_config = kwargs.pop("encoder")
        decoder_config = kwargs.pop("decoder")
        text_enc_config = kwargs.pop("text_encoder")

        self.encoder = encoder_config
        self.decoder = decoder_config
        self.text_encoder = text_enc_config
        self.is_encoder_decoder = True

        if isinstance(decoder_config, dict):
            self.decoder_start_token_id = decoder_config["bos_token_id"]
            self.pad_token_id = decoder_config["pad_token_id"]
            self.eos_token_id = decoder_config["eos_token_id"]
        else:
            self.decoder_start_token_id = decoder_config.bos_token_id
            self.pad_token_id = decoder_config.pad_token_id
            self.eos_token_id = decoder_config.eos_token_id


class DonutSwinTableRecConfig(PretrainedConfig):
    model_type = "donut-swin"

    attribute_map = {
        "num_attention_heads": "num_heads",
        "num_hidden_layers": "num_layers",
    }

    def __init__(
        self,
        image_size=(settings.TABLE_REC_IMAGE_SIZE["width"], settings.TABLE_REC_IMAGE_SIZE["height"]),
        patch_size=4,
        num_channels=3,
        embed_dim=128,
        depths=[2, 2, 14, 2],
        num_heads=[4, 8, 16, 32],
        num_kv_heads=[4, 8, 16, 32],
        window_size=8,
        mlp_ratio=4.0,
        qkv_bias=True,
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        drop_path_rate=0.1,
        hidden_act="gelu",
        use_absolute_embeddings=True,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        encoder_length=1024,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.embed_dim = embed_dim
        self.depths = depths
        self.num_layers = len(depths)
        self.num_heads = num_heads
        self.num_kv_heads = num_kv_heads
        self.window_size = window_size
        self.mlp_ratio = mlp_ratio
        self.qkv_bias = qkv_bias
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.drop_path_rate = drop_path_rate
        self.hidden_act = hidden_act
        self.use_absolute_embeddings = use_absolute_embeddings
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
        # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
        # this indicates the channel dimension after the last stage of the model
        self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
        self.encoder_length = encoder_length


class SuryaTableRecDecoderConfig(PretrainedConfig):
    model_type = "surya_tablerec"

    def __init__(
        self,
        num_hidden_layers=3,
        vocab_size=settings.TABLE_REC_MAX_ROWS + SPECIAL_TOKENS,
        hidden_size=512,
        intermediate_size=4 * 512,
        encoder_hidden_size=1024,
        num_attention_heads=8,
        lru_width=None,
        attention_window_size=16,
        conv1d_width=4,
        logits_soft_cap=30.0,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=0,
        eos_token_id=1,
        bos_token_id=2,
        hidden_activation="gelu_pytorch_tanh",
        rope_theta=10000.0,
        block_types=("attention",),
        cross_attn_layers=(0, 1, 2, 3),
        encoder_cross_attn_layers=(0, 1, 2, 3),
        self_attn_layers=(0, 1, 2, 3),
        global_attn_layers=(0, 1, 2, 3),
        attention_dropout=0.0,
        num_key_value_heads=4,
        attention_bias=False,
        w_init_variance_scale=0.01,
        init_std=0.02,
        tie_word_embeddings=False,
        aux_heads=0, # How many n-token-ahead heads to add
        causal=True,
        max_classes=2 + SPECIAL_TOKENS,
        max_width=1024 + SPECIAL_TOKENS,
        max_height=1024 + SPECIAL_TOKENS,
        out_box_size=1024,
        **kwargs,
    ):
        self.num_hidden_layers = num_hidden_layers
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_attention_heads = num_attention_heads
        self.lru_width = lru_width if lru_width is not None else hidden_size
        self.attention_window_size = attention_window_size
        self.conv1d_width = conv1d_width
        self.logits_soft_cap = logits_soft_cap
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.block_types = list(block_types)
        self.hidden_activation = hidden_activation
        self.head_dim = self.hidden_size // self.num_attention_heads
        self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads
        if self.num_key_value_heads > self.num_attention_heads:
            raise ValueError("The number of `num_key_value_heads` must be smaller than `num_attention_heads`")
        self.cross_attn_layers = cross_attn_layers
        self.self_attn_layers = self_attn_layers
        self.global_attn_layers = global_attn_layers
        self.attention_dropout = attention_dropout
        self.attention_bias = attention_bias
        self.w_init_variance_scale = w_init_variance_scale
        self.final_w_init_variance_scale = 2.0 / self.num_hidden_layers
        self.init_std = init_std
        self.tie_word_embeddings = tie_word_embeddings
        self.aux_heads = aux_heads
        self.encoder_hidden_size=encoder_hidden_size
        self.causal = causal
        self.encoder_cross_attn_layers = encoder_cross_attn_layers
        self.max_classes = max_classes
        self.max_width = max_width
        self.max_height = max_height
        self.out_box_size = out_box_size

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            **kwargs,
        )

    @property
    def layers_block_type(self):
        return (self.block_types * 100)[: self.num_hidden_layers]


class SuryaTableRecTextEncoderConfig(PretrainedConfig):
    model_type = "surya_tablerec"

    def __init__(
        self,
        num_hidden_layers=4,
        vocab_size=settings.TABLE_REC_MAX_ROWS + SPECIAL_TOKENS,
        hidden_size=1024,
        intermediate_size=4 * 1024,
        encoder_hidden_size=1024,
        num_attention_heads=16,
        lru_width=None,
        attention_window_size=16,
        conv1d_width=4,
        logits_soft_cap=30.0,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=0,
        eos_token_id=1,
        bos_token_id=2,
        hidden_activation="gelu_pytorch_tanh",
        rope_theta=10000.0,
        block_types=("attention",),
        cross_attn_layers=(0, 1, 2, 3, 4, 5),
        self_attn_layers=(0, 1, 2, 3, 4, 5),
        global_attn_layers=(0, 1, 2, 3, 4, 5),
        attention_dropout=0.0,
        num_key_value_heads=16,
        attention_bias=False,
        w_init_variance_scale=0.01,
        init_std=0.02,
        tie_word_embeddings=False,
        causal=False,
        max_width=BOX_DIM + SPECIAL_TOKENS,
        max_height=BOX_DIM + SPECIAL_TOKENS,
        max_position_embeddings=1024,
        **kwargs,
    ):
        self.num_hidden_layers = num_hidden_layers
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_attention_heads = num_attention_heads
        self.lru_width = lru_width if lru_width is not None else hidden_size
        self.attention_window_size = attention_window_size
        self.conv1d_width = conv1d_width
        self.logits_soft_cap = logits_soft_cap
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.block_types = list(block_types)
        self.hidden_activation = hidden_activation
        self.head_dim = self.hidden_size // self.num_attention_heads
        self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads
        if self.num_key_value_heads > self.num_attention_heads:
            raise ValueError("The number of `num_key_value_heads` must be smaller than `num_attention_heads`")
        self.cross_attn_layers = cross_attn_layers
        self.self_attn_layers = self_attn_layers
        self.global_attn_layers = global_attn_layers
        self.attention_dropout = attention_dropout
        self.attention_bias = attention_bias
        self.w_init_variance_scale = w_init_variance_scale
        self.final_w_init_variance_scale = 2.0 / self.num_hidden_layers
        self.init_std = init_std
        self.tie_word_embeddings = tie_word_embeddings
        self.encoder_hidden_size = encoder_hidden_size
        self.causal = causal
        self.max_width = max_width
        self.max_height = max_height
        self.max_position_embeddings = max_position_embeddings

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            **kwargs,
        )

    @property
    def layers_block_type(self):
        return (self.block_types * 100)[: self.num_hidden_layers]