File size: 9,292 Bytes
52f1bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import math
from typing import Dict, Union, Optional, List, Iterable

import cv2
import torch
from torch import TensorType
from transformers import DonutImageProcessor, DonutProcessor
from transformers.image_processing_utils import BatchFeature
from transformers.image_transforms import pad, normalize
from transformers.image_utils import PILImageResampling, ImageInput, ChannelDimension, make_list_of_images, get_image_size
import numpy as np
from PIL import Image
import PIL
from surya.model.recognition.tokenizer import Byt5LangTokenizer
from surya.settings import settings
from surya.model.table_rec.config import BOX_DIM, SPECIAL_TOKENS


def load_processor():
    processor = SuryaProcessor()
    processor.image_processor.train = False
    processor.image_processor.max_size = settings.TABLE_REC_IMAGE_SIZE

    processor.token_pad_id = 0
    processor.token_eos_id = 1
    processor.token_bos_id = 2
    processor.token_row_id = 3
    processor.token_unused_id = 4
    processor.box_size = (BOX_DIM, BOX_DIM)
    processor.special_token_count = SPECIAL_TOKENS
    return processor


class SuryaImageProcessor(DonutImageProcessor):
    def __init__(self, *args, max_size=None, train=False, **kwargs):
        super().__init__(*args, **kwargs)

        self.patch_size = kwargs.get("patch_size", (4, 4))
        self.max_size = max_size
        self.train = train

    @classmethod
    def numpy_resize(cls, image: np.ndarray, size, interpolation=cv2.INTER_LANCZOS4):
        max_width, max_height = size["width"], size["height"]

        resized_image = cv2.resize(image, (max_width, max_height), interpolation=interpolation)
        resized_image = resized_image.transpose(2, 0, 1)

        return resized_image

    def process_inner(self, images: List[np.ndarray]):
        assert images[0].shape[2] == 3 # RGB input images, channel dim last

        # This also applies the right channel dim format, to channel x height x width
        images = [SuryaImageProcessor.numpy_resize(img, self.max_size, self.resample) for img in images]
        assert images[0].shape[0] == 3 # RGB input images, channel dim first

        # Convert to float32 for rescale/normalize
        images = [img.astype(np.float32) for img in images]

        # Pads with 255 (whitespace)
        # Pad to max size to improve performance
        max_size = self.max_size
        images = [
            SuryaImageProcessor.pad_image(
                image=image,
                size=max_size,
                input_data_format=ChannelDimension.FIRST,
                pad_value=settings.RECOGNITION_PAD_VALUE
            )
            for image in images
        ]
        # Rescale and normalize
        for idx in range(len(images)):
            images[idx] = images[idx] * self.rescale_factor
        images = [
            SuryaImageProcessor.normalize(img, mean=self.image_mean, std=self.image_std, input_data_format=ChannelDimension.FIRST)
            for img in images
        ]

        return images

    def preprocess(
        self,
        images: ImageInput,
        do_resize: bool = None,
        size: Dict[str, int] = None,
        resample: PILImageResampling = None,
        do_thumbnail: bool = None,
        do_align_long_axis: bool = None,
        do_pad: bool = None,
        random_padding: bool = False,
        do_rescale: bool = None,
        rescale_factor: float = None,
        do_normalize: bool = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        **kwargs,
    ) -> PIL.Image.Image:
        images = make_list_of_images(images)

        # Convert to numpy for later processing steps
        images = [np.array(img) for img in images]
        images = self.process_inner(images)

        data = {"pixel_values": images}
        return BatchFeature(data=data, tensor_type=return_tensors)

    @classmethod
    def pad_image(
        cls,
        image: np.ndarray,
        size: Dict[str, int],
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        pad_value: float = 0.0,
    ) -> np.ndarray:
        output_height, output_width = size["height"], size["width"]
        input_height, input_width = get_image_size(image, channel_dim=input_data_format)

        delta_width = output_width - input_width
        delta_height = output_height - input_height

        assert delta_width >= 0 and delta_height >= 0

        pad_top = delta_height // 2
        pad_left = delta_width // 2

        pad_bottom = delta_height - pad_top
        pad_right = delta_width - pad_left

        padding = ((pad_top, pad_bottom), (pad_left, pad_right))
        return pad(image, padding, data_format=data_format, input_data_format=input_data_format, constant_values=pad_value)

    @classmethod
    def align_long_axis(
        cls,
        image: np.ndarray,
        size: Dict[str, int],
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ) -> np.ndarray:
        input_height, input_width = image.shape[:2]
        output_height, output_width = size["height"], size["width"]

        if (output_width < output_height and input_width > input_height) or (
            output_width > output_height and input_width < input_height
        ):
            image = np.rot90(image, 3)

        return image

    @classmethod
    def normalize(
        cls,
        image: np.ndarray,
        mean: Union[float, Iterable[float]],
        std: Union[float, Iterable[float]],
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        **kwargs,
    ) -> np.ndarray:
        return normalize(
            image, mean=mean, std=std, data_format=data_format, input_data_format=input_data_format, **kwargs
        )


class SuryaProcessor(DonutProcessor):
    def __init__(self, image_processor=None, tokenizer=None, train=False, **kwargs):
        image_processor = SuryaImageProcessor.from_pretrained(settings.RECOGNITION_MODEL_CHECKPOINT)
        if image_processor is None:
            raise ValueError("You need to specify an `image_processor`.")

        tokenizer = Byt5LangTokenizer()
        super().__init__(image_processor, tokenizer)
        self.current_processor = self.image_processor
        self._in_target_context_manager = False
        self.max_input_boxes = kwargs.get("max_input_boxes", 256)
        self.extra_input_boxes = kwargs.get("extra_input_boxes", 32)

    def resize_boxes(self, img, boxes):
        width, height = img.size
        box_width, box_height = self.box_size
        for box in boxes:
            # Rescale to 0-1024
            box[0] = box[0] / width * box_width
            box[1] = box[1] / height * box_height
            box[2] = box[2] / width * box_width
            box[3] = box[3] / height * box_height

            if box[0] < 0:
                box[0] = 0
            if box[1] < 0:
                box[1] = 0
            if box[2] > box_width:
                box[2] = box_width
            if box[3] > box_height:
                box[3] = box_height

        return boxes

    def __call__(self, *args, **kwargs):
        images = kwargs.pop("images", [])
        boxes = kwargs.pop("boxes", [])
        assert len(images) == len(boxes)

        if len(args) > 0:
            images = args[0]
            args = args[1:]

        for i in range(len(boxes)):
            if len(boxes[i]) > self.max_input_boxes:
                downsample_ratio = math.ceil(len(boxes[i]) / self.max_input_boxes)
                boxes[i] = boxes[i][::downsample_ratio]

        new_boxes = []
        max_len = self.max_input_boxes + self.extra_input_boxes
        box_masks = []
        box_ends = []
        for i in range(len(boxes)):
            nb = self.resize_boxes(images[i], boxes[i])
            nb = [[b + self.special_token_count for b in box] for box in nb] # shift up
            nb = nb[:self.max_input_boxes - 1]

            nb.insert(0, [self.token_row_id] * 4) # Insert special token for max rows/cols
            for _ in range(self.extra_input_boxes):
                nb.append([self.token_unused_id] * 4)

            pad_length = max_len - len(nb)
            box_mask = [1] * len(nb) + [1] * (pad_length)
            box_ends.append(len(nb))
            nb = nb + [[self.token_unused_id] * 4] * pad_length

            new_boxes.append(nb)
            box_masks.append(box_mask)

        box_ends = torch.tensor(box_ends, dtype=torch.long)
        box_starts = torch.tensor([0] * len(boxes), dtype=torch.long)
        box_ranges = torch.stack([box_starts, box_ends], dim=1)

        inputs = self.image_processor(images, *args, **kwargs)
        inputs["input_boxes"] = torch.tensor(new_boxes, dtype=torch.long)
        inputs["input_boxes_mask"] = torch.tensor(box_masks, dtype=torch.long)
        inputs["input_boxes_counts"] = box_ranges
        return inputs