Spaces:
Running
Running
import torch | |
from transformers import DetrFeatureExtractor, AutoModelForObjectDetection | |
from surya.settings import settings | |
from PIL import Image | |
import numpy as np | |
class MaxResize(object): | |
def __init__(self, max_size=800): | |
self.max_size = max_size | |
def __call__(self, image): | |
width, height = image.size | |
current_max_size = max(width, height) | |
scale = self.max_size / current_max_size | |
resized_image = image.resize((int(round(scale * width)), int(round(scale * height)))) | |
return resized_image | |
def to_tensor(image): | |
# Convert PIL Image to NumPy array | |
np_image = np.array(image).astype(np.float32) | |
# Rearrange dimensions to [C, H, W] format | |
np_image = np_image.transpose((2, 0, 1)) | |
# Normalize to [0.0, 1.0] | |
np_image /= 255.0 | |
return torch.from_numpy(np_image) | |
def normalize(tensor, mean, std): | |
for t, m, s in zip(tensor, mean, std): | |
t.sub_(m).div_(s) | |
return tensor | |
def structure_transform(image): | |
image = MaxResize(1000)(image) | |
tensor = to_tensor(image) | |
normalized_tensor = normalize(tensor, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
return normalized_tensor | |
def box_cxcywh_to_xyxy(x): | |
x_c, y_c, w, h = x.unbind(-1) | |
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] | |
return torch.stack(b, dim=1) | |
def rescale_bboxes(out_bbox, size): | |
width, height = size | |
boxes = box_cxcywh_to_xyxy(out_bbox) | |
boxes = boxes * torch.tensor([width, height, width, height], dtype=torch.float32) | |
return boxes | |
def outputs_to_objects(outputs, img_sizes, id2label): | |
m = outputs.logits.softmax(-1).max(-1) | |
batch_labels = list(m.indices.detach().cpu().numpy()) | |
batch_scores = list(m.values.detach().cpu().numpy()) | |
batch_bboxes = outputs['pred_boxes'].detach().cpu() | |
batch_objects = [] | |
for i in range(len(img_sizes)): | |
pred_bboxes = [elem.tolist() for elem in rescale_bboxes(batch_bboxes[i], img_sizes[i])] | |
pred_scores = batch_scores[i] | |
pred_labels = batch_labels[i] | |
objects = [] | |
for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes): | |
class_label = id2label[int(label)] | |
if not class_label == 'no object': | |
objects.append({ | |
'label': class_label, | |
'score': float(score), | |
'bbox': [float(elem) for elem in bbox]} | |
) | |
rows = [] | |
cols = [] | |
for i, cell in enumerate(objects): | |
if cell["label"] == "table column": | |
cols.append(cell) | |
if cell["label"] == "table row": | |
rows.append(cell) | |
batch_objects.append({ | |
"rows": rows, | |
"cols": cols | |
}) | |
return batch_objects | |
def load_tatr(): | |
return AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition-v1.1-all").to(settings.TORCH_DEVICE_MODEL) | |
def batch_inference_tatr(model, images, batch_size): | |
device = model.device | |
rows_cols = [] | |
for i in range(0, len(images), batch_size): | |
batch_images = images[i:i + batch_size] | |
pixel_values = torch.stack([structure_transform(img) for img in batch_images], dim=0).to(device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(pixel_values) | |
id2label = model.config.id2label | |
id2label[len(model.config.id2label)] = "no object" | |
rows_cols.extend(outputs_to_objects(outputs, [img.size for img in batch_images], id2label)) | |
return rows_cols |