Spaces:
Running
Running
from transformers import PretrainedConfig | |
class EfficientViTConfig(PretrainedConfig): | |
r""" | |
```""" | |
model_type = "efficientvit" | |
def __init__( | |
self, | |
num_classes=2, | |
num_channels=3, | |
widths=(32, 64, 128, 256, 512), | |
head_dim=32, | |
num_stages=4, | |
depths=(1, 1, 1, 6, 6), | |
strides=(2, 2, 2, 2, 2), | |
hidden_sizes=(32, 64, 160, 256), | |
patch_size=(7, 7), | |
hidden_dropout_prob=0.0, | |
attention_probs_dropout_prob=0.0, | |
classifier_dropout_prob=0.0, | |
layer_norm_eps=1e-6, | |
decoder_layer_hidden_size=128, | |
decoder_hidden_size=512, | |
semantic_loss_ignore_index=255, | |
initializer_range=0.02, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.num_classes = num_classes | |
self.widths = widths | |
self.head_dim = head_dim | |
self.num_channels = num_channels | |
self.num_stages = num_stages | |
self.depths = depths | |
self.strides = strides | |
self.hidden_sizes = hidden_sizes | |
self.patch_size = patch_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.classifier_dropout_prob = classifier_dropout_prob | |
self.layer_norm_eps = layer_norm_eps | |
self.decoder_hidden_size = decoder_hidden_size | |
self.decoder_layer_hidden_size = decoder_layer_hidden_size | |
self.semantic_loss_ignore_index = semantic_loss_ignore_index | |
self.initializer_range = initializer_range |