Spaces:
Running
Running
import copy | |
from typing import Optional, List, Union, Tuple | |
from transformers import MBartForCausalLM, MBartConfig | |
from torch import nn | |
from transformers.activations import ACT2FN | |
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_attention_mask | |
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, BaseModelOutputWithPastAndCrossAttentions | |
from transformers.models.mbart.modeling_mbart import MBartPreTrainedModel, MBartDecoder, MBartLearnedPositionalEmbedding, MBartDecoderLayer | |
from surya.model.ordering.config import MBartOrderConfig | |
import torch | |
import math | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
From llama | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
class MBartGQAttention(nn.Module): | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
num_kv_heads: int, | |
dropout: float = 0.0, | |
is_decoder: bool = False, | |
bias: bool = True, | |
is_causal: bool = False, | |
config: Optional[MBartConfig] = None, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.num_kv_heads = num_kv_heads | |
self.num_kv_groups = self.num_heads // self.num_kv_heads | |
assert self.num_heads % self.num_kv_heads == 0, f"num_heads ({self.num_heads}) must be divisible by num_kv_heads ({self.num_kv_heads})" | |
assert embed_dim % self.num_kv_heads == 0, f"embed_dim ({self.embed_dim}) must be divisible by num_kv_heads ({self.num_kv_heads})" | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
self.config = config | |
if (self.head_dim * num_heads) != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.scaling = self.head_dim**-0.5 | |
self.is_decoder = is_decoder | |
self.is_causal = is_causal | |
self.k_proj = nn.Linear(embed_dim, self.num_kv_heads * self.head_dim, bias=bias) | |
self.v_proj = nn.Linear(embed_dim, self.num_kv_heads * self.head_dim, bias=bias) | |
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def _shape_key_value(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scaling | |
# get key, value proj | |
# `past_key_value[0].shape[2] == key_value_states.shape[1]` | |
# is checking that the `sequence_length` of the `past_key_value` is the same as | |
# the provided `key_value_states` to support prefix tuning | |
if ( | |
is_cross_attention | |
and past_key_value is not None | |
and past_key_value[0].shape[2] == key_value_states.shape[1] | |
): | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._shape_key_value(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._shape_key_value(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape_key_value(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape_key_value(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
else: | |
# self_attention | |
key_states = self._shape_key_value(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape_key_value(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
# Expand kv heads, then match query shape | |
key_states = repeat_kv(key_states, self.num_kv_groups) | |
value_states = repeat_kv(value_states, self.num_kv_groups) | |
key_states = key_states.reshape(*proj_shape) | |
value_states = value_states.reshape(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
if layer_head_mask.size() != (self.num_heads,): | |
raise ValueError( | |
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if output_attentions: | |
# this operation is a bit awkward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to be reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned across GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped, past_key_value | |
MBART_ATTENTION_CLASSES = { | |
"eager": MBartGQAttention, | |
"flash_attention_2": None | |
} | |
class MBartOrderDecoderLayer(MBartDecoderLayer): | |
def __init__(self, config: MBartConfig): | |
nn.Module.__init__(self) | |
self.embed_dim = config.d_model | |
self.self_attn = MBART_ATTENTION_CLASSES[config._attn_implementation]( | |
embed_dim=self.embed_dim, | |
num_heads=config.decoder_attention_heads, | |
num_kv_heads=config.kv_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
is_causal=True, | |
config=config, | |
) | |
self.dropout = config.dropout | |
self.activation_fn = ACT2FN[config.activation_function] | |
self.activation_dropout = config.activation_dropout | |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.encoder_attn = MBART_ATTENTION_CLASSES[config._attn_implementation]( | |
self.embed_dim, | |
config.decoder_attention_heads, | |
num_kv_heads=config.kv_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
config=config, | |
) | |
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) | |
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) | |
self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
class BboxEmbedding(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.x1_embed = nn.Embedding(config.max_width, config.d_model) | |
self.y1_embed = nn.Embedding(config.max_height, config.d_model) | |
self.x2_embed = nn.Embedding(config.max_width, config.d_model) | |
self.y2_embed = nn.Embedding(config.max_height, config.d_model) | |
self.w_embed = nn.Embedding(config.max_width, config.d_model) | |
self.h_embed = nn.Embedding(config.max_height, config.d_model) | |
self.cx_embed = nn.Embedding(config.max_width, config.d_model) | |
self.cy_embed = nn.Embedding(config.max_height, config.d_model) | |
self.box_pos_embed = nn.Embedding(config.max_position_embeddings, config.d_model) | |
def forward(self, boxes: torch.LongTensor, input_box_counts: torch.LongTensor, past_key_values_length: int): | |
x1, y1, x2, y2 = boxes.unbind(dim=-1) | |
# Shape is (batch_size, num_boxes/seq len, d_model) | |
w = x2 - x1 | |
h = y2 - y1 | |
# Center x and y in torch long tensors | |
cx = (x1 + x2) / 2 | |
cy = (y1 + y2) / 2 | |
cx = cx.long() | |
cy = cy.long() | |
coord_embeds = self.x1_embed(x1) + self.y1_embed(y1) + self.x2_embed(x2) + self.y2_embed(y2) | |
embedded = coord_embeds + self.w_embed(w) + self.h_embed(h) + self.cx_embed(cx) + self.cy_embed(cy) | |
# Add in positional embeddings for the boxes | |
if past_key_values_length == 0: | |
for j in range(embedded.shape[0]): | |
box_start = input_box_counts[j, 0] | |
box_end = input_box_counts[j, 1] - 1 # Skip the sep token | |
box_count = box_end - box_start | |
embedded[j, box_start:box_end] = embedded[j, box_start:box_end] + self.box_pos_embed.weight[:box_count] | |
return embedded | |
class MBartOrderDecoder(MBartDecoder): | |
def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None): | |
MBartPreTrainedModel.__init__(self, config) | |
self.dropout = config.dropout | |
self.layerdrop = config.decoder_layerdrop | |
self.padding_idx = config.pad_token_id | |
self.max_target_positions = config.max_position_embeddings | |
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 | |
self.embed_tokens = BboxEmbedding(config) if embed_tokens is None else embed_tokens | |
if embed_tokens is not None: | |
self.embed_tokens.weight = embed_tokens.weight | |
self.embed_positions = MBartLearnedPositionalEmbedding( | |
config.max_position_embeddings, | |
config.d_model, | |
) | |
# Language-specific MoE goes at second and second-to-last layer | |
self.layers = nn.ModuleList([MBartOrderDecoderLayer(config) for _ in range(config.decoder_layers)]) | |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
self.layernorm_embedding = nn.LayerNorm(config.d_model) | |
self.layer_norm = nn.LayerNorm(config.d_model) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_boxes: torch.LongTensor = None, | |
input_boxes_mask: Optional[torch.Tensor] = None, | |
input_boxes_counts: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_boxes is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
elif input_boxes is not None: | |
input = input_boxes | |
input_shape = input_boxes.size()[:-1] # Shape (batch_size, num_boxes) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
input = inputs_embeds[:, :, -1] | |
else: | |
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
# past_key_values_length | |
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_boxes, input_boxes_counts, past_key_values_length) * self.embed_scale | |
if self._use_flash_attention_2: | |
# 2d mask is passed through the layers | |
attention_mask = input_boxes_mask if (input_boxes_mask is not None and 0 in input_boxes_mask) else None | |
else: | |
# 4d mask is passed through the layers | |
attention_mask = _prepare_4d_causal_attention_mask( | |
input_boxes_mask, input_shape, inputs_embeds, past_key_values_length | |
) | |
if past_key_values_length == 0: | |
box_ends = input_boxes_counts[:, 1] | |
box_starts = input_boxes_counts[:, 0] | |
input_shape_arranged = torch.arange(input_shape[1], device=attention_mask.device)[None, :] | |
# Enable all boxes to attend to each other (before the sep token) | |
# Ensure that the boxes are not attending to the padding tokens | |
boxes_end_mask = input_shape_arranged < box_ends[:, None] | |
boxes_start_mask = input_shape_arranged >= box_starts[:, None] | |
boxes_mask = boxes_end_mask & boxes_start_mask | |
boxes_mask = boxes_mask.unsqueeze(1).unsqueeze(1) # Enable proper broadcasting | |
attention_mask = attention_mask.masked_fill(boxes_mask, 0) | |
# expand encoder attention mask | |
if encoder_hidden_states is not None and encoder_attention_mask is not None: | |
if self._use_flash_attention_2: | |
encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None | |
else: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
encoder_attention_mask = _prepare_4d_attention_mask( | |
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] | |
) | |
# embed positions | |
positions = self.embed_positions(input, past_key_values_length) | |
hidden_states = inputs_embeds + positions.to(inputs_embeds.device) | |
hidden_states = self.layernorm_embedding(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
use_cache = False | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None | |
next_decoder_cache = () if use_cache else None | |
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired | |
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): | |
if attn_mask is not None: | |
if attn_mask.size()[0] != len(self.layers): | |
raise ValueError( | |
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" | |
f" {attn_mask.size()[0]}." | |
) | |
for idx, decoder_layer in enumerate(self.layers): | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.training: | |
dropout_probability = torch.rand([]) | |
if dropout_probability < self.layerdrop: | |
continue | |
past_key_value = past_key_values[idx] if past_key_values is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
head_mask[idx] if head_mask is not None else None, | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, | |
None, | |
output_attentions, | |
use_cache, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
cross_attn_layer_head_mask=( | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None | |
), | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
if encoder_hidden_states is not None: | |
all_cross_attentions += (layer_outputs[2],) | |
hidden_states = self.layer_norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
cross_attentions=all_cross_attentions, | |
) | |
class MBartOrderDecoderWrapper(MBartPreTrainedModel): | |
""" | |
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is | |
used in combination with the [`EncoderDecoderModel`] framework. | |
""" | |
def __init__(self, config): | |
super().__init__(config) | |
self.decoder = MBartOrderDecoder(config) | |
def forward(self, *args, **kwargs): | |
return self.decoder(*args, **kwargs) | |
class MBartOrder(MBartForCausalLM): | |
config_class = MBartOrderConfig | |
_tied_weights_keys = [] | |
def __init__(self, config, **kwargs): | |
config = copy.deepcopy(config) | |
config.is_decoder = True | |
config.is_encoder_decoder = False | |
MBartPreTrainedModel.__init__(self, config) | |
self.model = MBartOrderDecoderWrapper(config) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_boxes: torch.LongTensor = None, | |
input_boxes_mask: Optional[torch.Tensor] = None, | |
input_boxes_counts: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
**kwargs | |
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model.decoder( | |
input_boxes=input_boxes, | |
input_boxes_mask=input_boxes_mask, | |
input_boxes_counts=input_boxes_counts, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
head_mask=head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
logits = self.lm_head(outputs[0]) | |
loss = None | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithCrossAttentions( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
cross_attentions=outputs.cross_attentions, | |
) |