Spaces:
Running
Running
from copy import deepcopy | |
from typing import Dict, Union, Optional, List, Tuple | |
import torch | |
from torch import TensorType | |
from transformers import DonutImageProcessor, DonutProcessor | |
from transformers.image_processing_utils import BatchFeature | |
from transformers.image_utils import PILImageResampling, ImageInput, ChannelDimension, make_list_of_images, \ | |
valid_images, to_numpy_array | |
import numpy as np | |
from PIL import Image | |
import PIL | |
from surya.settings import settings | |
def load_processor(checkpoint=settings.ORDER_MODEL_CHECKPOINT): | |
processor = OrderImageProcessor.from_pretrained(checkpoint) | |
processor.size = settings.ORDER_IMAGE_SIZE | |
box_size = 1024 | |
max_tokens = 256 | |
processor.token_sep_id = max_tokens + box_size + 1 | |
processor.token_pad_id = max_tokens + box_size + 2 | |
processor.max_boxes = settings.ORDER_MAX_BOXES - 1 | |
processor.box_size = {"height": box_size, "width": box_size} | |
return processor | |
class OrderImageProcessor(DonutImageProcessor): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.patch_size = kwargs.get("patch_size", (4, 4)) | |
def process_inner(self, images: List[np.ndarray]): | |
images = [img.transpose(2, 0, 1) for img in images] # convert to CHW format | |
assert images[0].shape[0] == 3 # RGB input images, channel dim last | |
# Convert to float32 for rescale/normalize | |
images = [img.astype(np.float32) for img in images] | |
# Rescale and normalize | |
images = [ | |
self.rescale(img, scale=self.rescale_factor, input_data_format=ChannelDimension.FIRST) | |
for img in images | |
] | |
images = [ | |
self.normalize(img, mean=self.image_mean, std=self.image_std, input_data_format=ChannelDimension.FIRST) | |
for img in images | |
] | |
return images | |
def process_boxes(self, boxes): | |
padded_boxes = [] | |
box_masks = [] | |
box_counts = [] | |
for b in boxes: | |
# Left pad for generation | |
padded_b = deepcopy(b) | |
padded_b.append([self.token_sep_id] * 4) # Sep token to indicate start of label predictions | |
padded_boxes.append(padded_b) | |
max_boxes = max(len(b) for b in padded_boxes) | |
for i in range(len(padded_boxes)): | |
pad_len = max_boxes - len(padded_boxes[i]) | |
box_len = len(padded_boxes[i]) | |
box_mask = [0] * pad_len + [1] * box_len | |
padded_box = [[self.token_pad_id] * 4] * pad_len + padded_boxes[i] | |
padded_boxes[i] = padded_box | |
box_masks.append(box_mask) | |
box_counts.append([pad_len, max_boxes]) | |
return padded_boxes, box_masks, box_counts | |
def resize_img_and_boxes(self, img, boxes): | |
orig_dim = img.size | |
new_size = (self.size["width"], self.size["height"]) | |
img.thumbnail(new_size, Image.Resampling.LANCZOS) # Shrink largest dimension to fit new size | |
img = img.resize(new_size, Image.Resampling.LANCZOS) # Stretch smaller dimension to fit new size | |
img = np.asarray(img, dtype=np.uint8) | |
width, height = orig_dim | |
box_width, box_height = self.box_size["width"], self.box_size["height"] | |
for box in boxes: | |
# Rescale to 0-1024 | |
box[0] = box[0] / width * box_width | |
box[1] = box[1] / height * box_height | |
box[2] = box[2] / width * box_width | |
box[3] = box[3] / height * box_height | |
if box[0] < 0: | |
box[0] = 0 | |
if box[1] < 0: | |
box[1] = 0 | |
if box[2] > box_width: | |
box[2] = box_width | |
if box[3] > box_height: | |
box[3] = box_height | |
return img, boxes | |
def preprocess( | |
self, | |
images: ImageInput, | |
boxes: List[List[int]], | |
do_resize: bool = None, | |
size: Dict[str, int] = None, | |
resample: PILImageResampling = None, | |
do_thumbnail: bool = None, | |
do_align_long_axis: bool = None, | |
do_pad: bool = None, | |
random_padding: bool = False, | |
do_rescale: bool = None, | |
rescale_factor: float = None, | |
do_normalize: bool = None, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, | |
input_data_format: Optional[Union[str, ChannelDimension]] = None, | |
**kwargs, | |
) -> PIL.Image.Image: | |
images = make_list_of_images(images) | |
if not valid_images(images): | |
raise ValueError( | |
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " | |
"torch.Tensor, tf.Tensor or jax.ndarray." | |
) | |
new_images = [] | |
new_boxes = [] | |
for img, box in zip(images, boxes): | |
if len(box) > self.max_boxes: | |
raise ValueError(f"Too many boxes, max is {self.max_boxes}") | |
img, box = self.resize_img_and_boxes(img, box) | |
new_images.append(img) | |
new_boxes.append(box) | |
images = new_images | |
boxes = new_boxes | |
# Convert to numpy for later processing steps | |
images = [np.array(image) for image in images] | |
images = self.process_inner(images) | |
boxes, box_mask, box_counts = self.process_boxes(boxes) | |
data = { | |
"pixel_values": images, | |
"input_boxes": boxes, | |
"input_boxes_mask": box_mask, | |
"input_boxes_counts": box_counts, | |
} | |
return BatchFeature(data=data, tensor_type=return_tensors) |