Spaces:
Running
Running
from copy import deepcopy | |
from typing import List | |
from PIL import Image | |
from surya.detection import batch_text_detection | |
from surya.input.processing import slice_polys_from_image, slice_bboxes_from_image, convert_if_not_rgb | |
from surya.postprocessing.text import sort_text_lines | |
from surya.recognition import batch_recognition | |
from surya.schema import TextLine, OCRResult | |
def run_recognition(images: List[Image.Image], langs: List[List[str] | None], rec_model, rec_processor, bboxes: List[List[List[int]]] = None, polygons: List[List[List[List[int]]]] = None, batch_size=None) -> List[OCRResult]: | |
# Polygons need to be in corner format - [[x1, y1], [x2, y2], [x3, y3], [x4, y4]], bboxes in [x1, y1, x2, y2] format | |
assert bboxes is not None or polygons is not None | |
assert len(images) == len(langs), "You need to pass in one list of languages for each image" | |
images = convert_if_not_rgb(images) | |
slice_map = [] | |
all_slices = [] | |
all_langs = [] | |
for idx, (image, lang) in enumerate(zip(images, langs)): | |
if polygons is not None: | |
slices = slice_polys_from_image(image, polygons[idx]) | |
else: | |
slices = slice_bboxes_from_image(image, bboxes[idx]) | |
slice_map.append(len(slices)) | |
all_slices.extend(slices) | |
all_langs.extend([deepcopy(lang)] * len(slices)) | |
rec_predictions, _ = batch_recognition(all_slices, all_langs, rec_model, rec_processor, batch_size=batch_size) | |
predictions_by_image = [] | |
slice_start = 0 | |
for idx, (image, lang) in enumerate(zip(images, langs)): | |
slice_end = slice_start + slice_map[idx] | |
image_lines = rec_predictions[slice_start:slice_end] | |
slice_start = slice_end | |
text_lines = [] | |
for i in range(len(image_lines)): | |
if polygons is not None: | |
poly = polygons[idx][i] | |
else: | |
bbox = bboxes[idx][i] | |
poly = [[bbox[0], bbox[1]], [bbox[2], bbox[1]], [bbox[2], bbox[3]], [bbox[0], bbox[3]]] | |
text_lines.append(TextLine( | |
text=image_lines[i], | |
polygon=poly | |
)) | |
pred = OCRResult( | |
text_lines=text_lines, | |
languages=lang, | |
image_bbox=[0, 0, image.size[0], image.size[1]] | |
) | |
predictions_by_image.append(pred) | |
return predictions_by_image | |
def run_ocr(images: List[Image.Image], langs: List[List[str] | None], det_model, det_processor, rec_model, rec_processor, batch_size=None, highres_images: List[Image.Image] | None = None) -> List[OCRResult]: | |
images = convert_if_not_rgb(images) | |
highres_images = convert_if_not_rgb(highres_images) if highres_images is not None else [None] * len(images) | |
det_predictions = batch_text_detection(images, det_model, det_processor) | |
all_slices = [] | |
slice_map = [] | |
all_langs = [] | |
for idx, (det_pred, image, highres_image, lang) in enumerate(zip(det_predictions, images, highres_images, langs)): | |
polygons = [p.polygon for p in det_pred.bboxes] | |
if highres_image: | |
width_scaler = highres_image.size[0] / image.size[0] | |
height_scaler = highres_image.size[1] / image.size[1] | |
scaled_polygons = [[[int(p[0] * width_scaler), int(p[1] * height_scaler)] for p in polygon] for polygon in polygons] | |
slices = slice_polys_from_image(highres_image, scaled_polygons) | |
else: | |
slices = slice_polys_from_image(image, polygons) | |
slice_map.append(len(slices)) | |
all_langs.extend([lang] * len(slices)) | |
all_slices.extend(slices) | |
rec_predictions, confidence_scores = batch_recognition(all_slices, all_langs, rec_model, rec_processor, batch_size=batch_size) | |
predictions_by_image = [] | |
slice_start = 0 | |
for idx, (image, det_pred, lang) in enumerate(zip(images, det_predictions, langs)): | |
slice_end = slice_start + slice_map[idx] | |
image_lines = rec_predictions[slice_start:slice_end] | |
line_confidences = confidence_scores[slice_start:slice_end] | |
slice_start = slice_end | |
assert len(image_lines) == len(det_pred.bboxes) | |
lines = [] | |
for text_line, confidence, bbox in zip(image_lines, line_confidences, det_pred.bboxes): | |
lines.append(TextLine( | |
text=text_line, | |
polygon=bbox.polygon, | |
bbox=bbox.bbox, | |
confidence=confidence | |
)) | |
lines = sort_text_lines(lines) | |
predictions_by_image.append(OCRResult( | |
text_lines=lines, | |
languages=lang, | |
image_bbox=det_pred.image_bbox | |
)) | |
return predictions_by_image | |